Intel International Science and Engineering Fair

International Rules and Guidelines 2019
Table of Contents

General Requirements for All Projects

Intel ISEF Ethics Statement ... 3
Intel ISEF Eligibility/Limitations .. 3
Intel ISEF Requirements ... 3
Continuation/Research Progression of Projects 4
Team Projects .. 4

Roles and Responsibilities of Students and Adults
1. The Student Researcher(s) ... 5
2. The Adult Sponsor .. 5
3. The Qualified Scientist ... 5
4. The Designated Supervisor ... 5
5. The Institutional Review Board (IRB) ... 5
6. The Affiliated Fair Scientific Review Committees (SRC) 6
7. Regulated Research Institution/Industrial Settings Review Committees .. 6
8. The Intel ISEF Scientific Review Committee 6

Human Participants Rules
1. Exempt Studies .. 7
2. Rules .. 7
3. Human Participant Risk Assessment ... 9

Vertebrate Animals Rules
1. Rules for ALL Vertebrate Animal Studies 10
2. Additional Rules for Projects Conducted at School/Home/Field 11
3. Additional Rules for Projects Conducted in a Regulated Research Institution .. 12

Potentially Hazardous Biological Agents Rules
Rules for ALL Projects Involving Potentially Hazardous Biological Agents .. 13
Additional Rules for Projects Involving Unknown Microorganisms .. 14
Additional Rules for Projects Involving Recombinant DNA (rDNA) Technologies ... 14
Additional Rules for Projects Involving Tissues and Body Fluids Including Blood and Blood Products 14
Potentially Hazardous Biological Agents Risk Assessment .. 16

Hazardous Chemicals, Activities or Devices Rules
Rules for ALL Projects Involving Hazardous Chemicals, Activities or Devices .. 17
Additional Rules for Specific Regulated Areas 17
Hazardous Chemicals, Activities or Devices Risk Assessment .. 19

Engineering Projects Guide ... 20

Sources of Information .. 21

Display & Safety Regulations .. 24

Information on Required Abstract .. 27

Categories & Sub-Categories .. 28

Forms .. 29
The International Rules and Guidelines for Science Fairs is available at student.societyforscience.org/intel-isef in multiple formats. Familiarity with the rules is critical for students, parents, teachers, mentors, fair directors and local and affiliated fair Scientific Review Committees (SRC) and Institutional Review Boards (IRB).

- International Rules and Guidelines – The full text of the International Rules and forms in html and as a downloadable pdf.
- The Intel ISEF Rules Wizard – An interactive tool which asks questions about your intended project and provides a list of forms required.
- Common SRC Problems – Frequent problems that emerge during Scientific Review Committee review for qualification at the Intel ISEF. Read these to learn what NOT to do.

These Rules are applicable for:

The Intel International Science and Engineering Fair 2019
Phoenix, AZ, USA, May 12 –17, 2019

The purpose of these rules is to:
- protect the rights and welfare of the student researcher
- protect the rights and welfare of human participants
- protect the health and welfare of vertebrate animal subjects
- protect and promote good stewardship of the environment
- ensure adherence to federal regulations
- ensure use of safe laboratory practices
- determine eligibility for competition in the Intel ISEF

For pre-review and approval of your project, find your fair at:
https://findafair.societyforscience.org/

For rules questions, contact the Intel ISEF Scientific Review Committee:
SRC@societyforscience.org

For general questions, contact:
Society for Science & the Public
Science Education Programs
1719 N Street, NW, Washington, DC 20036
office: 202-785-2255, fax: 202-785-1243
email: sciedu@societyforscience.org
ALL PROJECTS

Ethics Statement
Student researchers are expected to maintain the highest standards of honesty and integrity. Scientific fraud and misconduct are not condoned at any level of research or competition. This includes plagiarism, forgery, use or presentation of other researcher’s work as one’s own and fabrication of data. Fraudulent projects will fail to qualify for competition in affiliated fairs and the Intel ISEF. Society for Science & the Public reserves the right to revoke recognition of a competition in a fabrication of data. Fraudulent projects will fail to qualify for presentation of other researcher’s work as one’s own and or competition. This includes plagiarism, forgery, use or standards of honesty and integrity. Scienti Student researchers are expected to maintain the highest Ethics Statement

Eligibility/Limitations
1. General: Each Intel ISEF-affiliated fair may send to Intel ISEF the number of projects provided by their affiliation agreement.

2. A student must be selected by an Intel ISEF-affiliated fair, and meet both of the following:
 a. be in grades 9–12 or equivalent; and
 b. not have reached age 20 on or before May 1 preceding the Intel ISEF.

3. English is the official language of the Intel ISEF. Student project boards and abstracts must be in English.

4. Each student is only allowed to enter one project. That project may include no more than 12 months of continuous research and may not include research performed before January 2018.

5. Team projects must have no more than three members. Teams competing at Intel ISEF must be composed of members who all meet Intel ISEF eligibility.

6. Students may compete in only one Intel ISEF affiliated fair, except when proceeding to a state/national fair affiliated with the Intel ISEF from an affiliated regional fair.

7. Projects that are demonstrations, ‘library’ research or informational projects, ‘explanation’ models or kit building are not appropriate for the Intel ISEF.

8. All sciences and engineering disciplines are represented at the Intel ISEF and projects compete in one of the 22 categories. Review a complete list of categories and sub-categories with definitions.

9. A research project may be a part of a larger study performed by professional scientists, but the project presented by the student must be only their own portion of the complete study.

Requirements

General
1. All domestic and international students competing in an Intel ISEF-affiliated fair must adhere to all rules as set forth in this document.

2. All projects must adhere to the Ethics Statement above.

3. It is the responsibility of the student and the Adult Sponsor to evaluate the study to determine if the research will require forms and/or review and approval prior to experimentation.

4. Projects must adhere to local, state and U.S. Federal laws, regulations and permitting conditions. In addition, projects conducted outside the U.S. must also adhere to the laws of the country and jurisdiction in which the project was performed.

5. The use of non-animal research methods and alternatives to animal research are strongly encouraged and must be explored before conducting a vertebrate animal project.

6. Introduction or disposal of non-native, genetically-altered, and/or invasive species (e.g. insects, plants, invertebrates, vertebrates), pathogens, toxic chemicals or foreign substances into the environment is prohibited. It is recommended that students reference their local, state or national regulations and quarantine lists.

7. Projects competing at Intel ISEF must have an exhibit that adheres to Intel ISEF Display & Safety requirements and is visible during all operable hours of the exhibit hall without reliance on electricity or internet connections.

8. All projects must adhere to the requirements of the affiliated fair(s) in which it competes to qualify for participation in the Intel ISEF. Affiliated fairs may have additional restrictions or requirements. Knowledge of these requirements is the responsibility of the student and Adult Sponsor.

Approval and Documentation

1. Before experimentation begins, a local or regional Institutional Review Board (IRB) or Scientific Review Committee (SRC) associated with the Intel ISEF-affiliated fair must review and approve most projects involving human participants, vertebrate animals, and potentially hazardous biological agents. Note: If a project involves the testing of a student designed invention, prototype or concept by a human, an IRB review and approval may be required prior to experimentation. See Human Participants Rules for details.

2. Every student must complete the Student Checklist (1A), a Research Plan/Project Summary and Approval Form (1B) and review the project with the Adult Sponsor in coordination with completion by the Adult Sponsor of the Checklist for Adult Sponsor (1).

3. A Qualified Scientist is required for all studies involving Biosafety Lab-2 (BSL-2) potentially hazardous biological agents and DEA-controlled substances and is also required for many human participant studies and many vertebrate animal studies.

4. After initial IRB/SRC approval (if required), any proposed changes in the Student Checklist (1A) and Research Plan/Project Summary must be re-approved before laboratory experimentation/data collection resumes.

5. Projects which are continuations of a previous year’s work and which require IRB/SRC approval must undergo the review process with the current year ResearchPlan/Project Summary prior to experimentation/data collection for the current year.
6. Any continuing project must document that the additional research is new and different. (Continuation/Research Progression Projects Form (7)).

7. If work was conducted in a regulated research institution, industrial setting or any work site other than home, school or field at any time during the current Intel ISEF project year, the Regulated Research Institutional/Industrial Setting Form (1C) must be completed and displayed at the project booth.

8. After experimentation, each student or team must submit a (maximum) 250-word, one-page abstract which summarizes the current year’s work. The abstract must describe research conducted by the student, not by the supervising adult(s).

9. A project data book and research paper are not required, but are strongly recommended for judging purposes. Regional or local fairs may require a project data book and/or a research paper.

10. All signed forms, certifications, and permits must be available for review by all regional, state, national and international affiliated fair SRCs in which the student(s) participate. This review must occur after experimentation and before competition.

Digital Paperwork and Signatures
Submission of forms generated by a digital system are allowable under the following conditions:
1. The forms must have the same content and order as the Intel ISEF forms.

2. Digital signatures must have a verification system via login and have a time and date stamp to indicate this authentication.

3. Paperwork submitted to Society for Science & the Public for Intel ISEF must be scanned and submitted via the online portal.

Continuation/Research Progression of Projects
1. As in the professional world, research projects may build on work performed previously. A valid continuation project is a sound scientific endeavor. Students will be judged only on laboratory experiment/data collection performed over 12 continuous months beginning no earlier than January 2018 and ending May 2019.

2. Any project based on the student’s prior research could be considered a continuation/research progression project. These projects must document that the additional research is a substantive expansion from prior work (e.g. testing a new variable or new line of investigation). Repetition of previous experimentation with the same methodology and research question, even with an increased sample size, is an example of an unacceptable continuation.

3. The display board and abstract must reflect the current year’s work only. The project title displayed in the finalist’s booth may mention years (for example, “Year Two of an Ongoing Study”). Previous year’s databooks, research papers and supporting documents may be at the booth if properly labeled as such.

4. Longitudinal studies are permitted as an acceptable continuation under the following conditions:
 a. The study is a multi-year study testing or documenting the same variables in which time is a critical variable. (Examples: Effect of high rain or drought on soil in a given basin, return of flora and fauna in a burned area over time.)
 b. Each consecutive year must demonstrate time-based change.
 c. The display board must be based on collective past conclusionary data and its comparison to the current year data set. No raw data from previous years may be displayed.

5. All projects must be reviewed and approved each year and forms must be completed for the new year.

6. NOTE: For competition in the Intel ISEF, the Continuation Research Progression Project Form (7) is required for projects in the same field of study as a previous project. This form must be displayed at the project booth. Retention of all prior years’ paperwork is required and must be presented to the Intel ISEF SRC upon request

Team Projects
1. Team projects compete and are judged in the category of their research at the Intel ISEF. All team members must meet the eligibility requirements for Intel ISEF.

2. Teams must have no more than three members. A team with members from different geographic regions may compete at an affiliated fair of one of its members, but not at multiple fairs. However, each affiliated fair holds the authority to determine whether teams with members outside of a fair’s geographic territory are eligible to compete, understanding that if the team wins the right to attend Intel ISEF, all team members’ expenses must be supported by the fair.
 a. Team membership cannot be changed during a given research year unless there are extenuating circumstances and the local SRC reviews and approves the change, including converting a team project to an individual project or vice versa. Such conversions must address rationale for the change and include a clear delineation between research preceding the change and that which will follow. A memorandum documenting this review and approval should be attached to Form 1A.
 b. Once a project has competed in a science fair at any level, team membership cannot change and the project cannot be converted from an individual project to a team project or vice versa.
 c. In a future research year, any project may be converted from an individual to a team project, from a team to an individual project and/or have a change in team membership.

3. Each team is encouraged to appoint a team leader to coordinate the work and act as spokesperson. However, each member of the team should be able to serve as spokesperson, be fully involved with the project, and be familiar with all aspects of the project. The final work should reflect the coordinated efforts of all team members and will be evaluated using the same judging criteria as individual projects.

4. Each team member must submit an Approval Form (1B). Team members must jointly submit the Checklist for Adult Sponsor (1), one abstract, a Student Checklist (1A), a Research Plan/Project Summary and other required forms.

5. Full names of all team members must appear on the abstract and forms.
Roles and Responsibilities of Students and Adults

The Student Researcher(s)
The student researcher is responsible for all aspects of the research project including enlisting the aid of any required supervisory adults (Adult Sponsor, Qualified Scientist, etc.), obtaining necessary approvals (SRC, IRB, etc.), following the Rules & Guidelines of the Intel ISEF, and performing the experimentation, engineering, data analysis, etc.

Students are expected to understand and abide by the Ethics Statement and attest to this understanding on Approval Form 1B.

The Adult Sponsor
An Adult Sponsor may be a teacher, parent, professor, and/or other professional scientist in whose lab the student is working. An Adult Sponsor should be knowledgeable in the area of student research and should have close contact with the student during the course of the project.

The Adult Sponsor is responsible for working with the student to evaluate any possible risks involved in order to ensure the health and safety of the student conducting the research and the humans and/or animals involved in the study. The Adult Sponsor must review the student’s Student Checklist (1A) and Research Plan/Project Summary to insure that: a) experimentation follows local, state, and Federal laws and Intel ISEF rules; b) forms are completed by other required adults; and c) criteria for the Qualified Scientist adhere to those set forth below.

The Adult Sponsor must be familiar with the regulations that govern potentially dangerous research as they apply to a specific student project. These may include chemical and equipment usage, experimental techniques, research involving human and/or vertebrate animals, cell cultures, microorganisms, or animal tissues. Some experiments involve procedures or materials that are regulated by state, federal or non-U.S. national laws. If not thoroughly familiar with the regulations, the Adult Sponsor should help the student enlist the aid of a Qualified Scientist and/or a Designated Supervisor.

The Adult Sponsor is responsible for ensuring the student’s research is eligible for entry in the Intel ISEF.

The Qualified Scientist (QS)
A Qualified Scientist (QS) should have earned a doctoral/professional degree in a scientific discipline that relates to the student’s area of research. Alternatively, the SRC may consider an individual with extensive experience and expertise in the student’s area of research as a Qualified Scientist. The Qualified Scientist must be thoroughly familiar with local, state, and federal regulations that govern the student’s area of research.

The Qualified Scientist and the Adult Sponsor may be the same person, if that person is qualified as described above. A student may work with a Qualified Scientist in a city, state or country that is not where the student resides. In this case, the student must work locally with a Designated Supervisor (see below) who has been trained in the techniques to be applied by the student.

The Designated Supervisor (DS)
The Designated Supervisor (DS) is an adult who is directly responsible for overseeing student experimentation. The Designated Supervisor need not have an advanced degree, but must be thoroughly familiar with the student’s project, and must be trained in the student’s area of research. The Adult Sponsor may act as the Designated Supervisor.

If a student is experimenting with live vertebrates and the animals are in a situation where their behavior or habitat is influenced by humans, the Designated Supervisor must be knowledgeable about the humane care and handling of the animals.

Review Committees

The Institutional Review Board (IRB)
An Institutional Review Board (IRB), is a committee that, according to federal regulations (45-CFR-46), must evaluate the potential physical and/or psychological risk of research involving humans. All proposed human research must be reviewed and approved by an IRB before experimentation begins. This includes review of any surveys or questionnaires to be used in a project.

Federal regulations require local community involvement. Therefore, it is advisable that an IRB be established at the school level to evaluate human research projects. If necessary, the local or Intel ISEF-affiliated SRC can serve as an IRB as long as it has the required membership. An IRB must consist of a minimum of three members including the following:

• An educator
• A school administrator (preferably principal or vice principal)
• A medical or mental health professional. The medical or mental health professional may be a medical doctor, nurse practitioner, physician’s assistant, doctor of pharmacy, registered nurse, psychologist, licensed social worker or licensed clinical professional counselor. The medical or mental health professional on the IRB may change depending on the nature of the study. This person must be knowledgeable about and capable of evaluating the physical and/or psychological risk involved in a given study.

Additional Expertise: If an expert is not available in the immediate area, documented contact with an external expert is recommended. A copy of all correspondence with the expert (e.g. emails) must be attached to Form 4 and can be used in lieu of the signature of that expert.

To avoid conflict of interest, no Adult Sponsor, parent or other relative of the student, the Qualified Scientist, or Designated Supervisor who oversees the project may serve on the IRB reviewing that project. Additional members are recommended to help avoid a potential conflict of interest and to increase the expertise of the committee.

IRBs exist at federally Regulated Research Institutions (e.g., universities, medical centers, NIH, correctional facilities). Prisoner advocates must be included on the IRB when research participants are incarcerated. The institutional IRB must initially review and approve all proposed research conducted at or sponsored by that institution. The Adult Sponsor and the local IRB are responsible for ensuring that the project is appropriate for a pre-college student and adheres to the Intel ISEF rules.

An IRB is responsible for assessing risk and documenting the determination of risk level on Human Participant Form 4. However, in reviewing projects just prior to a fair, if the SRC serving at that level of competition judges an IRB’s decision as inappropriate, thereby placing human participants in jeopardy, they may override the IRB’s decision and the project may fail to qualify for competition. It is advised that IRBs consult with the local or affiliated fair SRCs and/or with the Intel ISEF SRC in questionable cases.
The Affiliated Fair Scientific Review Committee (SRC)
A Scientific Review Committee (SRC) is a group of qualified individuals that is responsible for evaluation of student research, certifications, research plans and exhibits for compliance with the rules, applicable laws and regulations at each level of science fair competition. Affiliated Fairs may authorize local SRCs to serve in this prior review capacity. The operation and composition of the local and Affiliated Fair SRCs must fully comply with the International Rules. Directions for obtaining preapproval are available from the affiliated Fair SRC. A list of fairs is at https://findafair.societyforscience.org/

Many project evaluations require additional expertise (e.g., on biosafety and/or of human risk groups). If the SRC needs an expert as one of its members and one is not in the immediate area, all documented contact with an external expert must be submitted. If animal research is involved, at least one member must be familiar with proper animal care procedures. Depending on the nature of the study, this person can be a veterinarian or animal care provider with training and/or experience in the species being studied.

To avoid conflict of interest, no Adult Sponsor, parent or other relative of the student(s), the Qualified Scientist, or the Designated Supervisor who oversees the project may serve on the SRC reviewing that project. Additional members are recommended to diversify and to increase the expertise of the committee.

A Scientific Review Committee (SRC) examines projects for the following:
- Evidence of proper supervision
- Completed forms, signatures, research dates, and preapproval dates (when required)
- Evidence of proper team composition
- Compliance with rules and laws governing human and/or animal research and research involving potentially hazardous biological agents and/or hazardous chemicals, activities or devices
- Compliance with the Intel ISEF ethics statement
- Use of accepted and appropriate research techniques
- Evidence that risks have been properly assessed
- Evidence of search for alternatives to animal use
- Humane treatment of animals
- Documentation of substantial expansion for continuation projects
- Evidence of appropriate literature search and attribution

Combined SRC/IRB Committee
A combined committee is allowed as long as the membership meets both the SRC and IRB requirements listed previously.

Regulated Research Institutions/Industrial Settings (RRI) Review Committees
Regulated Research Institution: A Regulated Research Institution within the U.S. is defined as a professional research/teaching institution that is regularly inspected by the USDA and is licensed to use animals covered by the Animal Welfare Act and may also be subject to U.S. Public Health Service Policy. Also included are all federal laboratories such as National Institutes of Health, Veteran's Affairs Medical Centers and the Centers for Disease Control. In addition, pharmaceutical and biotechnology companies and research institutions that utilize research animals that are not covered by the Animal Welfare Act but have an operational Institutional Animal Care and Use Committee and are in compliance with U.S. federal laws are included in this definition. For projects conducted outside of the United States, a Regulated Research Institution would be a comparable research institution that adheres to country laws governing the care and use of vertebrate animals.

Certain areas of research conducted in a regulated research institution or an industrial setting require review and approval by federally mandated committees that have been established at that institution. These committees include:
- Institutional Animal Care and Use Committee (IACUC); Animal Care and Use Committee (ACUC); Animal Ethics Committee
- Institutional Review Board (IRB); Human Subjects Participant Program (HSPP)
- Institutional Biosafety Committee (IBC)
- Embryonic Stem Cell Research Oversight Committee (ESCRO)
- Safety Review Committee

The ISEF Scientific Review Committee (Intel ISEF SRC)
All projects are reviewed by the Intel ISEF Scientific Review Committee prior to competition. The Intel ISEF SRC is the final arbiter of the qualification of students to participate in the Intel ISEF. Before the fair, committee members review research plans and all required forms to confirm that applicable Intel ISEF rules have been followed. The Intel ISEF SRC may request additional information from students prior to the Intel ISEF or may interview potential Intel ISEF participants at the fair to ensure that they qualify to compete.

The Intel ISEF SRC, like an Affiliated Fair SRC, is made up of adults knowledgeable about research regulations. In addition to the review of all projects at the Intel ISEF, committee members answer questions about the rules throughout the year from students and teachers. The ISEF SRC can be contacted at SRC@societyforscience.org.

Members of the Intel ISEF Scientific Review Committee 2019:

- Ms. Susan Appel
- Mr. Henry Disston
- Dr. Jennifer Green
- Dr. Paula Johnson
- Dr. Timothy Martin
- Mrs. Evelyn Montalvo
- Mr. Joseph Scott
- Dr. Jason Shuffit
- Mrs. Andrea Spencer
The following rules were developed to help pre-college student researchers adhere to the federal regulations governing professional scientists and to protect the welfare of both human participants and the student researcher. Health and well-being is of the highest priority when students conduct research with human participants.

According to Code of Federal Regulation 45, CFR 46, a human participant is a living individual about whom an investigator conducting research obtains (1) data or samples through intervention or interaction with individuals(s) or (2) identifiable private information.

Examples of projects that are considered “human participant research” include:
- Participants in physical activities (e.g., physical exertion, ingestion of any substance, any medical procedure)
- Psychological, educational and opinion studies (e.g., surveys, questionnaires, tests)
- Studies in which the researcher is the subject of the research
- Testing of student designed invention, prototype or computer application by human participants other than student researcher
- Data/record review projects that include data that are not de-identified/anonymous (e.g., data set that includes name, birth date, phone number or other identifying variables)
- Behavioral observations that
 a. involve any interaction with the observed individual(s) or where the researcher has modified the environment (e.g., post a sign, place an object).
 b. occur in non-public or restricted access settings (e.g., day care setting, doctor’s office)
 c. involve the recording of personally identifiable information.

Rules

1. Student researchers must complete ALL elements of the Human Participants portion of the Research Plan/Project Summary Instructions and evaluate and minimize the physical, psychological and privacy risks to their human participants. See Risk Assessment information on page 11 and the online Risk Assessment Guide (https://student.societyforscience.org/human-participants#riskassess) for additional guidance.

2. Student research involving human participants must be reviewed and approved by an Institutional Review Board (IRB) (See page 5) before any interaction (e.g., recruitment, data collection) with human participants may begin. It is the responsibility of the IRB to evaluate potential physical and/or psychological risks of the project and make a determination about whether the project is appropriate for student research and safe for the student researcher and participants.
 a. Projects that are conducted at school, at home or in the community that are not affiliated with a Regulated Research Institution (RRI) must be reviewed and approved by the School IRB before the student may begin recruiting and/or interacting with human participants. The School IRB must assess the risk and document its determination of risk on Form 4.
 b. Projects that are conducted at a Regulated Research Institution (RRI) (e.g., university, hospital, medical center, government lab) must have IRB approval from the RRI. A copy of the IRB approval for the project must be obtained. A letter from an adult mentor and/or Qualified Scientist is not sufficient documentation of the RRI IRB review and approval process.

3. The student must comply with all determinations made by the School or RRI IRB before beginning any interaction with human participants (e.g., recruitment, data collection).
 a. If the IRB requires a Qualified Scientist (QS), Form 2 must be completed by the QS before any interaction with human participants. The School IRB will review this completed form before approving the project.
 b. If the IRB requires a Designated Supervisor (DS), Form 3 must be completed before any interaction with human participants. The School IRB will review this completed form before approving the project.
 c. See rule #4 below regarding required procedures for obtaining informed consent/assent and/or parental permission.

Participation in research may begin only after research participants have voluntarily given informed consent/assent (in some cases with parental permission). Adult research participants may give their own consent. Research participants under 18 years of age and/or individuals not able to give consent (e.g. developmentally disabled individuals) give their assent, with the parent/guardian providing permission.

The School IRB will determine whether the consent/assent/parental permission may be a) verbal or implicit or b) must be written. See the Risk Assessment information on page 9 and the online Risk Assessment Guide (https://sspcdn.blob.core.windows.net/files/Documents/SEP/ISEF/Resources/Risk-Assessment-Guide.pdf) for further explanation of informed consent.

 a. Informed consent requires that the researcher provides complete information to the participant (and where applicable, parents or guardians) about the risks and benefits associated with participation in the research study, which then allows the participants and parents or guardians to make an informed decision about whether or not to participate.
 b. Participants must be informed that their participation is voluntary and that they are free to stop participating at any time (i.e., they may participate or decline to participate, with no adverse consequences of non-participation or aborted participation).
 c. Informed consent may not involve coercion.
 d. When written parental permission is required and the study includes a survey, the survey must be attached to the consent form.
 e. The student researcher may request that the IRB waive the requirement for written informed consent/parental permission in his/her research plan if the project meets specific requirements. See section on IRB waivers for more information about situations in which written parental permission and/or written informed consent can be waived by the IRB.

5. The research study must be in compliance with all privacy laws (e.g., U.S. Family Educational Rights and Privacy Act.)
2. Research on individual or group behavior or characteristics

1. Research involving normal educational practices

It is one of the following:

- Involves only minimal risk and anonymous data collection and if informed consent/assent/parental permission if the research involves only minimal risk and anonymous data collection and if it is one of the following:
 1. Research involving normal educational practices

7. Student researchers may NOT publish or display information in a report that identifies the human participants directly or through identifiers linked to the participants (including photographs) without the written consent of the participant(s) (Public Health Service Act, 42, USC 241 (d)).

8. All published instruments that are not in the public domain must be administered, scored and interpreted by a Qualified Scientist as required by the instrument publisher. Any and all use and distribution of the test must be in accordance with the publisher’s requirements, including procurement of legal copies of the instrument.

9. Studies that involve the collection of data via use of the internet (e.g., email, web-based surveys) are allowed, but researchers should be aware that they can pose challenges in a) collecting anonymous data, b) obtaining informed consent and c) ensuring that participants are of the appropriate age to give informed consent. See the Online Survey Consent Procedures (https://sspcdn.blob.core.windows.net/Documents/SEP/ISEF/Resources/Online-Survey-Consent-Procedures.pdf).

10. After initial IRB approval, a student with any proposed changes in the Research Plan must repeat the approval process and regain approval before resuming interaction (recruitment, data collection) with human participants.

11. After experimentation and before competition, the Affiliated Fair SRC will review for compliance with all rules.

12. The following forms are required for studies involving human participants:

a. Checklist for Adult Sponsor (1), Student Checklist (1A), Research Plan/Project Summary, and Approval Form (1B)

b. Human Participants Form (4) or IRB approval from an RRI and all applicable consents and survey(s)

c. Regulated Research Institution Form (1C), when applicable

d. Qualified Scientist Form (2), when applicable

e. Risk Assessment (3) when applicable

IRB Waiver of Written Informed Consent/Parental Permission

The IRB may waive the requirement for documentation of written informed consent/assent/parental permission if the research involves only minimal risk and anonymous data collection and if it is one of the following:

1. Research involving normal educational practices

2. Research on individual or group behavior or characteristics of individuals where the researcher does not manipulate the participants’ behavior and the study does not involve more than minimal risk.

3. Surveys, questionnaires, or activities that are determined by the IRB to involve perception, cognition, or game theory, etc. and that do NOT involve gathering personal information, invasion of privacy or potential for emotional distress.

4. Studies involving physical activity where the IRB determines that no more than minimal risk exists and where the probability and magnitude of harm or discomfort anticipated in the research are not greater than those ordinarily encountered in DAILY LIFE or during performance of routine physical activities.

If there is any uncertainty regarding the appropriateness of waiving written informed consent/assent/parental permission, it is strongly recommended that documentation of written informed consent/assent/parental permission be obtained.

Human Participant Involvement in Student-designed Invention, Prototype, Computer Application & Engineering/Design Projects

Student-designed invention, prototype, computer application and engineering/design projects that involve testing of the invention by any human participant require attention to the potential risks to the individual(s) testing or trying out the invention/prototype.

1. IRB review and pre-approval is necessary when the student-designed invention, prototype, application, etc. is tested by human participants other than the student researcher(s). This includes surveys conducted regarding potential use, review of the product and/or opinions regarding the project.

2. Projects in which the invention, prototype or project involves a medical diagnosis or intervention (as defined by the FDA or Medical Practices Act) and is tested on human participants must be conducted at a Regulated Research Institution (RRI) with a Qualified Scientist and receive IRB Approval from the Institution.

3. A Risk Assessment Form 3 is recommended for all student-designed inventions or prototypes.

Exempt Studies (Do Not Require IRB Preapproval or Human Participants Paperwork)

Some studies involving humans are exempt from IRB pre-approval or additional human participant forms. Exempt projects for the Intel ISEF and affiliated fairs are:

1. Student-designed Invention, Prototype, Computer Applications or Engineering/Design Project in which the student researcher is the only person testing the invention, prototype or computer application and the testing does not pose a health or safety hazard. It is recommended that a Risk Assessment Form (3) be completed.

2. Data/record review studies (e.g., baseball statistics, crime statistics) in which the data are taken from preexisting data sets that are publicly available and/or published and do not involve any interaction with humans or the collection of any data from a human participant for the purpose of the student’s research project.
3. Behavioral observations of unrestricted, public settings (e.g., shopping mall, public park) in which all of the following apply:
 a. the researcher has no interaction with the individuals being observed
 b. the researcher does not manipulate the environment in any way and
 c. the researcher does not record any personally identifiable data.

4. Projects in which the student receives pre-existing/retrospective data in a de-identified/anonymous format which complies with both of the following conditions:
 a. the professional providing the data certifies in writing that the data have been appropriately de-identified before being given to the student researcher and are in compliance with all privacy and HIPAA laws, and
 b. the affiliated fair SRC ensures that the data were appropriately de-identified by review of the written documentation provided by the supervising adult(s).

Human Participant Risk Assessment

Use this information to help determine the level of risk involved in a study involving human participants.

All human participant projects are considered to have some level of risk.

No more than minimal risk exists when the probability and magnitude of harm or discomfort anticipated in the research are not greater (in and of themselves) than those ordinarily encountered in everyday life or during performance of routine physical or psychological examinations or tests.

More than minimal risk exists when the possibility of physical or psychological harm or harm related to breach of confidentiality or invasion of privacy is greater than what is typically encountered in everyday life. Most of these studies require documented informed consent or minor assent with the permission of parent or guardian (as applicable).

1. Examples of Greater than Minimal Physical Risk
 a. Exercise other than ordinarily encountered in everyday life
 b. Ingestion, tasting, smelling, or application of a substance. However, ingestion or tasting projects that involve commonly available food or drink will be evaluated by the IRB which determines risk level based upon the nature of the study and local norms.
 c. Exposure to any potentially hazardous material.

2. Examples of Greater than Minimal Psychological Risk
 A research activity (e.g. survey, questionnaire, viewing of stimuli) or experimental condition that could potentially result in emotional stress. Some examples include: answering questions related to personal experiences such as sexual or physical abuse, divorce, depression, anxiety; answering questions that could result in feelings of depression, anxiety, or low self esteem; or viewing violent or distressing video images.

3. Privacy Concerns
 a. The student researcher and IRB must consider whether an activity could potentially result in negative consequences for the participant due to invasion of privacy or breach of confidentiality. Protecting confidentiality requires measures to ensure that identifiable research data are not disclosed to the public or unauthorized individuals.
 b. Risk level can be reduced by protecting confidentiality or collecting data that is strictly anonymous. This requires the collection of research in such a way that it is impossible to connect research data with the individual who provided the data.

4. Risk Groups
 If the research study includes participants from any of the following groups, the IRB and student research must consider whether the nature of the study requires special protections or accommodations:
 a. Any member of a group that is naturally at-risk (e.g. pregnant women, developmentally disabled persons, economically or educationally disadvantaged persons, individuals with diseases such as cancer, asthma, diabetes, AIDS, dyslexia, cardiac disorders, psychiatric disorders, learning disorders, etc.)
 b. Special groups that are protected by federal regulations or guidelines (e.g. children/minors, prisoners, pregnant women, students receiving services under the Individuals with Disabilities Education Act (IDEA).

Vertebrate Animals Rules
Rules involving vertebrate animals

The following rules were developed to help pre-college student researchers adhere to the federal regulations governing professional scientists and to protect the welfare of both animal subjects and the student researcher. Health and well-being is of high priority when students conduct research with animal subjects.

The Society strongly endorses the use of non-animal research methods and encourages students to use alternatives to animal research, which must be explored and discussed in the research plan. The guiding principles for the use of animals in research include the following “Four R’s”:

- **Replace** vertebrate animals with invertebrates, lower life forms, tissue/cell cultures and/or computer simulations where possible.
- **Reduce** the number of animals without compromising statistical validity.
- **Refine** the experimental protocol to minimize pain or distress to the animals.
- **Respect** animals and their contribution to research.

If the use of vertebrate animals is necessary, students must consider additional alternatives to reduce and refine the use of animals.

All projects involving vertebrate animals must adhere to the rules for all vertebrate animal studies AND to either Section A or Section B rules, depending on the nature of the study and the research site.

A project is considered a tissue study and not a vertebrate animal study if tissue is obtained from an animal that was euthanized for a purpose other than the student's project. (Use of tissues obtained from research conducted at a Regulated Research Institution requires a copy of an IACUC certification with the name of the research institution, the title of the study, the IACUC approval number and date of IACUC approval.) In tissue studies, a student may observe the vertebrate study, but may not manipulate or have any direct involvement in the vertebrate animal experimental procedures.

Vertebrate animals, as covered by these rules, are defined as:

1. Live, nonhuman vertebrate mammalian embryos or fetuses
2. Tadpoles
3. Bird and reptile eggs starting three days (72 hours) prior to hatching
4. All other nonhuman vertebrates (including fish) at hatching or birth.

Exception: Because of their delayed cognitive neural development, zebrafish embryos may be used up to seven days (168 hours) post-fertilization.

Rules for ALL Vertebrate Animal Studies

1. All vertebrate animal studies must have a research plan that includes:
 a. Justification why animals must be used, including the reasons for the choice of species, the source of animals and the number of animals to be used; description, explanation, or identification of alternatives to animal use that were considered, and the reasons these alternatives were unacceptable; explanation of the potential impact or contribution this research may have on the broad fields of biology or medicine.
 b. Description of how the animals will be used. Include methods and procedures, such as experimental design and data analysis; description of the procedures that will minimize the potential for discomfort, distress, pain and injury to the animals during the course of experimentation; identification of the species, strain, sex, age, weight, source and number of animals proposed for use.

2. All vertebrate animal studies must be reviewed and approved before experimentation begins. An Institutional Animal Care and Use Committee, known as an IACUC, is the institutional animal oversight review and approval body for all animal studies at a Regulated Research Institution. The local OR affiliated fair SRC serves in this capacity for vertebrate animals studies performed in a school, home or field. Any SRC serving in this capacity must include a veterinarian or an animal care provider with training and/or experience in the species being studied.

3. Students performing vertebrate animal research must satisfy US federal law as well as local, state, and country laws and regulations of the jurisdiction in which research is performed.

4. Research projects which cause more than momentary or slight pain or distress are prohibited. Any illness or unexpected weight loss must be investigated and a veterinarian consulted to receive required medical care. This investigation must be documented by the Qualified Scientist or Designated Supervisor, who is qualified to determine the illness, or by a veterinarian. If the illness or distress is caused by the study, the experiment must be terminated immediately.

5. No vertebrate animal deaths due to the experimental procedures are permitted in any group or subgroup.
 a. Studies that are designed or anticipated to cause vertebrate animal death are prohibited.
 b. Any death that occurs must be investigated by a veterinarian, the Qualified Scientist or the Designated Supervisor who is qualified to determine if the cause of death was incidental or due to the experimental procedures. The project must be suspended until the cause is determined and then the results must be documented in writing.
 c. If death was the result of the experimental procedure, the study must be terminated, and the study will not qualify for competition.

6. All animals must be monitored for signs of distress. Because significant weight loss is one sign of stress, weight must be recorded at least weekly with 15% being the maximum permissible weight loss or growth retardation (compared to controls) of any experimental or control animal. Additionally, body conditioning scoring (BCS) systems are available for most species of animals utilized in research and are an objective method for assessing the overall health status of the research subject, with or without weight loss. A BCS system should be included in the design of any study utilizing live vertebrate animals and results regularly recorded.

7. Students are prohibited from designing or participating in an experiment associated with the following types of studies on vertebrate animals:
 a. Induced toxicity studies with known toxic substances that could cause pain, distress, or death, including but
not limited to alcohol, acid rain, pesticides, or heavy metals or studies with the intent to study toxic effects of a substance on a vertebrate animal.

b. Behavioral experiments using conditioning with aversive stimuli, mother/infant separation or induced helplessness.

c. Studies of pain.

d. Predator/vertebrate prey experiments.

8. Justification is required for an experimental design that involves food or fluid restriction and must be appropriate to the species. If the restriction exceeds 18 hours, the project must be reviewed and approved by an IACUC and conducted at a Regulated Research Institution (RRI).

9. Animals may not be captured from or released into the wild without approval of authorized wildlife or other regulatory officials. All appropriate methods and precautions must be used to decrease stress. Fish may be obtained from the wild only if the researcher releases the fish unharmed, has the proper license, and adheres to state, local and national fishing laws and regulations. The use of electrofishing is permissible only if conducted by a trained supervisor; students are prohibited from performing electrofishing.

10. A Qualified Scientist or Designated Supervisor must directly supervise all research involving vertebrate animals, except for observational studies.

11. After initial SRC approval, a student with any proposed changes in the Research Plan/Project Summary of the project must repeat the approval process before laboratory experimentation/data collection resumes.

Exempt Studies (Do Not Require SRC Preapproval)

1. Studies involving behavioral observations of animals are exempt from prior SRC review if ALL of the following apply:
 a. There is no interaction with the animals being observed,
 b. There is no manipulation of the animal environment in any way, and
 c. The study meets all federal and state agriculture, fish, game and wildlife laws and regulations.

A. Additional Rules for Projects Conducted at School/Home/Field

Vertebrate animal studies may be conducted at a home, school, farm, ranch, in the field, etc. This includes:

1. Studies of animals in their natural environment.
2. Studies of animals in zoological parks.
3. Studies of livestock that use standard agricultural practices.
4. Studies of fish that use standard aquaculture practices

These projects must be reviewed and approved by an SRC in which one member is either a veterinarian and/or an animal care provider/expert with training and/or experience in the species being studied.

1. These projects must adhere to BOTH of the following guidelines:
 a. The research involves only agricultural, behavioral, observational or supplemental nutritional studies on animals.
 AND
 b. The research involves only non-invasive and non-intrusive methods that do not negatively affect an animal's health or well-being.

All vertebrate animal studies that do not meet the criteria in Section A. must be conducted in a Regulated Research Institution (see Section B).

2. Animals must be treated kindly and cared for properly. Animals must be housed in a clean, ventilated, comfortable environment appropriate for the species. They must be given a continuous, clean (uncontaminated) water and food supply. Cages, pens and fish tanks must be cleaned frequently. Proper care must be provided at all times, including weekends, holidays, and vacation periods. Animals must be observed daily to assess their health and well-being. A Designated Supervisor is required to oversee the daily husbandry of the animals. Any of the following U.S. documents provide further guidance for animal husbandry:
 • Federal Animal Welfare Regulation
 • Guide for the Care and Use of Laboratory Animals
 • Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching (Ag-Guide)
 • Quality Assurance Manuals (for the appropriate species)

3. The local or affiliated fair Scientific Review Committee must determine if a veterinarian's certification of the research and animal husbandry plan is required. This certification, as well as SRC approval, is required before experimentation and is documented on Vertebrate Animal Form 5A. A veterinarian must certify experiments that involve supplemental nutrition, administration of prescription drugs and/or activities that would not be ordinarily encountered in the animal's daily life.

4. If an illness or emergency occurs, the affected animal(s) must receive proper medical or nursing care that is directed by a veterinarian. A student researcher must stop experimentation if there is unexpected weight loss or death in the experimental subjects. The experiment can only be resumed if the cause of illness or death is not related to the experimental procedures and if appropriate steps are taken to eliminate the causal factors. If death is the result of the experimental procedure, the study must be terminated, and the study will not qualify for competition.

5. The final disposition of the animals must be conducted in a responsible and ethical manner, and must be described on Vertebrate Animal Form 5A.

6. Euthanasia for tissue removal and/or pathological analysis is not permitted for a project conducted in a school/home/field site.

7. Livestock or fish raised for food using standard agricultural/aquacultural production practices may be euthanized by a qualified adult for carcass evaluation.

8. The following forms are required:
 a. Checklist for Adult Sponsor (1), Student Checklist (1A), Research Plan/Project Summary, and Approval Form (1B)
 b. Vertebrate Animal Form (5A)
 c. Qualified Scientist Form (2), when applicable
B. Additional Rules for Projects Conducted in a Regulated Research Institution

All studies not meeting the criteria in Section A that are otherwise permissible under Intel ISEF rules must be conducted in a Regulated Research Institution (RRI). A Regulated Research Institution within the U.S. is defined as a professional research/teaching institution that is regularly inspected by the USDA and is licensed to use animals covered by the Animal Welfare Act and may also be subject to U.S. Public Health Service Policy. Also included are all federal laboratories such as National Institutes of Health, Veteran’s Affairs Medical Centers and the Centers for Disease Control. In addition, pharmaceutical and biotechnology companies and research institutions that utilize research animals that are not covered by the Animal Welfare Act but have an operational Institutional Animal Care and Use Committee (IACUC) and are in compliance with U.S. federal laws are included in this definition. For projects conducted outside of the United States, a Regulated Research Institution would be a comparable research institution that adheres to country laws governing the care and use of vertebrate animals.

Some protocols permitted in a Regulated Research Institution are not permitted for participation in the Intel ISEF; adherence to RRI rules is necessary but may not be sufficient.

1. The Institutional Animal Care and Use Committee (IACUC) or the comparable animal oversight committee must approve all student research projects before experimentation begins. Such research projects must be conducted under the responsibility of a principal investigator. The local and affiliated fair SRCs must also review the project to certify that the research project complies with Intel ISEF Rules. This local and regional SRC review should occur before experimentation begins, if possible.

2. Student researchers are prohibited from performing euthanasia. Euthanasia at the end of experimentation for tissue removal and/or pathological analysis is permitted. All methods of euthanasia must adhere to current American Veterinarian Medical Association (AVMA) Guidelines.

3. Research projects that cause more than momentary or slight pain or distress to vertebrate animals that is not mitigated by approved anesthetics, analgesics and/or tranquilizers are prohibited.

4. Research in nutritional deficiency or research involving substances or drugs of unknown effect is permitted to the point that any clinical sign of distress is noted. In the case that distress is observed, the project must be suspended and measures must be taken to correct the deficiency or drug effect. A project can only be resumed if appropriate steps are taken to correct the causal factors.

5. The following forms are required:
 a. Checklist for Adult Sponsor (1), Student Checklist (1A), Research Plan/Project Summary, and Approval Form (1B)
 b. Regulated Research Institution Form (1C)
 c. Qualified Scientist Form (2)
 d. Vertebrate Animal Form (5B)
 e. PHBA Risk Assessment Form (6A) – for all studies involving tissues and body fluids.
 f. Human and Vertebrate Animal Tissue Form (6B) – for all studies involving tissues and body fluids.

Sources of Information are available as a separate section at the end of the document.
Potentially Hazardous Biological Agents (PHBA) Rules

Potentially Hazardous Biological Agents Rules for use of microorganisms (including bacteria, viruses, viroids, prions, rickettsia, fungi and parasites), recombinant DNA technologies or human or animal fresh/frozen tissues, blood, or body fluids.

Students are permitted to do research projects with potentially hazardous biological agents meeting the conditions and rules described below which were designed to protect students and to ensure adherence to federal and international biosafety regulations and guidelines.

When dealing with potentially hazardous biological agents, it is the responsibility of the student and all of the adults involved in a research project to conduct and document a risk assessment on Form (6A) to define the potential level of harm, injury or disease to plants, animals and humans that may occur when working with biological agents. The risk assessment determines a biosafety level which in turn determines if the project can proceed, and if so, the laboratory facilities, equipment, training, and supervision required.

All projects involving microorganisms, recombinant DNA technologies and human or animal fresh/frozen tissues, blood or body fluids must adhere to the rules below AND, depending on the study, to the additional rules in Section A, B or C.

Rules for ALL Studies with Potentially Hazardous Biological Agents (PHBA)

1. Prior review and approval is required for the use of potentially hazardous microorganisms (including bacteria, viruses, viroids, prions, rickettsia, fungi, and parasites), recombinant DNA (rDNA) technologies or human or animal fresh/frozen tissues, blood, or body fluids.

2. An affiliated fair SRC, an IBC or an IACUC must approve all research before experimentation begins. The initial risk assessment determined by the student researcher and adults supervising the project must be confirmed by the SRC, IBC or IACUC.

3. Experimentation involving the culturing of potentially hazardous biological agents, even BSL-1 organisms, is prohibited in a home environment. However, specimens may be collected at home as long as they are immediately transported to a laboratory with the BSL containment determined by the affiliated fair SRC.

4. Research determined to be at Biosafety Level 1 (BSL-1) must be conducted in a BSL-1 or higher laboratory. The research must be supervised by a trained Designated Supervisor or a Qualified Scientist. The student must be properly trained in standard microbiological practices.

5. Research determined to be at Biosafety Level 2 (BSL-2) must be conducted in a laboratory rated BSL-2 or above (commonly limited to a Regulated Research Institution). The research must be reviewed and approved by the Institutional Biosafety Committee (IBC) if the Regulated Research Institution requires the review. For a high school BSL-2 laboratory, the SRC must review and approve. The research must be supervised by a Qualified Scientist.

6. Students are prohibited from designing or participating in BSL-3 or BSL-4 Research.

7. Laboratory studies designed to culture known clinically significant multidrug resistant organisms (MDROs) must have a written justification for usage and be conducted at a Regulated Research Institution laboratory with a minimum of BSL-2 containment and documented IBC review and approval. Representative examples include, but are not limited to the following known agents: MRSA (Methicillin-Resistant *Staphylococcus aureus*), VISA/VRSA (Vancomycin Intermediate or Resistant *Staphylococcus aureus*), VRE (Vancomycin-Resistant *Enterococcus*), CRE (Carbapenem Resistant *Enterobacteriaceae*), ESBLs (Extended Spectrum Beta-Lactamase producing gram negative organisms), and fungi (yeasts or molds) with known resistance to antifungal agents.

8. Insertion of antibiotic resistance markers for the clonal selection of bioengineered organisms is permitted. However, students may not genetically engineer organisms with multiple drug resistant traits, nor intentionally select for such organisms through passage in culture, with the intended purpose of investigating the pathology, development, or treatment of antibiotic-resistant infections. Insertion of antibiotic-resistance traits or selection of organisms expressing traits that may affect the ability to provide effective treatment of infections acquired by humans, animals, or plants is strictly prohibited.

9. Extreme caution must be exercised when selecting and sub-culturing antibiotic-resistant organisms. Studies using such organisms, including BSL-1 organisms that may have originally been exempt from prior SRC approval, require at least BSL-2 containment.

10. The culturing of human or animal waste, including sewage sludge, is considered a BSL-2 study.

11. Naturally-occurring plant pathogens may be studied (not cultured) at home, but may not be introduced into a home/garden environment.

12. All potentially hazardous biological agents must be properly disposed at the end of experimentation in accordance with their biosafety level. For BSL 1 or BSL 2 organisms: Autoclave at 121 degrees Celsius for 20 minutes, use of a 10% bleach solution (1:10 dilution of domestic bleach), incineration, alkaline hydrolysis, biosafety pick-up and other manufacturer recommendations are acceptable.

13. Any proposed changes in the Research Plan/Project Summary by the student after initial local or affiliated fair SRC approval must undergo subsequent SRC or IBC review and approval before such changes are made and before experimentation resumes.

14. The following forms are required:
 a. Checklist for Adult Sponsor (1), Student Checklist (1A), Research Plan/Project Summary, and Approval Form (1B)
 b. Regulated Research Institution Form (1C) - when applicable
 c. Qualified Scientist (2), when applicable
A. Additional Rules for Projects Involving Unknown Microorganisms

Studies involving unknown microorganisms present a challenge because the presence, concentration and pathogenicity of possible agents are unknown. In science fair projects, these studies typically involve the collection and culturing of microorganisms from the environment (e.g. soil, household surfaces, skin.)

1. Research with unknown microorganisms can be treated as a BSL-1 study under the following conditions:
 a. Organism is cultured in a plastic petri dish (or other standard sterile non-breakable container) and sealed.
 b. Experiment involves only procedures in which the petri dish remains sealed throughout the experiment (e.g., counting presence of organisms or colonies).
 c. The sealed petri dish is disposed of via autoclaving or disinfection under the supervision of the Designated Supervisor.

2. If a culture container with unknown microorganisms is opened for any purpose, (except for disinfection/disposal), it must be treated as a BSL-2 study and involve BSL-2 laboratory precautions.

B. Additional Rules for Projects Involving Recombinant DNA (rDNA) Technologies

Studies involving rDNA technologies in which microorganisms, plants and/or animals have been genetically modified require close review to assess the risk level assignment. Some rDNA studies can be safely conducted in a BSL-1 high school laboratory with prior review by a SRC.

1. All rDNA technology studies involving BSL-1 organisms and BSL-1 host vector systems, including commercially available kits, must be conducted in a BSL-1 laboratory under the supervision of a Qualified Scientist or Designated Supervisor and must be approved by the SRC prior to experimentation. Examples include cloning of DNA in E. coli K–12, S. cerevisiae, and B. subtilis host-vector systems.

2. An rDNA technology study using BSL-1 agents that may convert to BSL-2 agents during the course of experimentation must be conducted entirely in a BSL-2 facility.

3. All rDNA technology studies involving BSL-2 organisms and/or BSL-2 host vector systems must be conducted in a Regulated Research Institution and approved by the IBC prior to experimentation, where applicable.

4. Propagation of recombinants containing DNA coding for human, plant or animal toxins (including viruses) is prohibited.

5. All genome editing studies that include alteration of germline cells, insertion of gene drives, use of rapid trait development systems (RTDS*), etc., should be categorized as a BSL-2 study and must be conducted at an RRI and approved by the IBC from the institution. Qualified scientists are expected to ensure that student research protocols address appropriate intrinsic and extrinsic containment precautions.

6. Introduction or disposal of non-native, genetically-altered, and/or invasive species (e.g. insects or other invertebrates, plants, vertebrates), pathogens, toxic chemicals or foreign substances into the environment is prohibited. Students and adult sponsors should reference their local, state and national regulations and quarantine lists.

C. Additional Rules for Projects with Tissues and Body Fluids, including Blood and Blood Products

Studies involving fresh/frozen tissue, blood or body fluids obtained from humans and/or vertebrates may contain microorganisms and have the potential of causing disease. Therefore, a proper risk assessment is required.

1. Research involving human and/or non-human primate established cell lines and tissue culture collections (e.g., obtained from the American Type Culture Collection) must be considered a BSL-1 or BSL-2 level organism as indicated by source information and treated accordingly. The source and/or catalog number of the cultures must be identified in the Research Plan/Project Summary.

2. If tissues are obtained from an animal that was euthanized for a purpose other than the student’s project, it may be considered a tissue study.
 a. Use of tissues obtained from research conducted at a Regulated Research Institution requires a copy of the IACUC certification with the name of the research institution, the title of the study, the IACUC approval number and date of IACUC approval.
 b. Use of tissues obtained from agricultural/aquacultural studies require prior SRC approval.

3. If the animal was euthanized solely for the student’s project, the study must be considered a vertebrate animal project and is subject to the vertebrate animal rules. (See vertebrate animal rules.)

4. The collection and examination of fresh/frozen tissue and/or body fluids, (not including blood or blood products; see rule 8) from a non-infectious source with little likelihood of microorganisms present must be considered Biosafety level 1 studies and must be conducted in a BSL-1 laboratory or higher and must be supervised by a Qualified Scientist or trained Designated Supervisor.

5. The collection and examination of fresh/frozen tissues or body fluids or meat and meat by-products NOT obtained from food stores, restaurants, or packing houses may contain microorganisms. Because of the increased risk from unknown potentially hazardous agents, these studies must be considered biosafety level 2 studies conducted in a BSL-2 laboratory under the supervision of a Qualified Scientist.

6. Human breast milk of unknown origin, unless certified free of HIV and Hepatitis C, and domestic unpasteurized animal milk are considered BSL-2.

7. All studies involving human or wild animal blood or blood products should be considered at a minimum a Biosafety level 2 study and must be conducted in a BSL-2 laboratory under the supervision of a Qualified Scientist. Known BSL-3 or BSL-4 blood is prohibited. Studies involving domestic animal blood may be considered a BSL-1 level study. All blood must be handled in accordance with standards and...
guidelines set forth in the OSHA, 29CFR, Subpart Z. Any tissue or instruments with the potential of containing blood-borne pathogens (e.g. blood, blood products, tissues that release blood when compressed, blood contaminated instruments) must be properly disposed after experimentation.

8. Studies of human body fluids, where the sample can be identified with a specific person, must have IRB review and approval, and informed consent.

9. Any study involving the collection and examination of body fluids that may contain biological agents belonging to BSL-3 or BSL-4 is prohibited.

10. A project involving a student researcher using their own body fluids (if not cultured)
 a. can be considered a BSL-1 study
 b. may be conducted in a home setting
 c. must have IRB review if the body fluid is serving as a measure of an effect of an experimental procedure on the student researcher (e.g. Student manipulates diet and takes a blood or urine sample). An example of a project not needing IRB review would be collecting urine to serve as a deer repellent.
 d. must receive prior SRC review and approval prior to experimentation.

11. Studies involving embryonic human stem cells must be conducted in a Registered Research Institution and reviewed and approved by the ESCRO (Embryonic Stem Cell Research Oversight) Committee.

Exempt Studies (no SRC pre-approval required)
The following types of studies are exempt from requiring SRC pre-approval as listed below, but may be subject to additional rules dependent upon the design of the project. Student researchers and adult sponsors are required to refer to sections A, B, and C of this section to review additional rules for projects that involve unknown organisms, recombinant DNA (rDNA) technologies, tissues, fluids, blood, or blood products before deciding upon a final biosafety level (BSL) designation for projects.

1. The following types of studies are exempt from prior SRC review, but require a Risk Assessment Form 3:
 a. Studies involving protists and archaea.
 b. Research using manure for composting, fuel production, or other non-culturing experiments.
 c. Commercially-available color change coliform water test kits. These kits must remain sealed and must be properly disposed.
 d. Studies involving decomposition of vertebrate organisms (such as in forensic projects).
 e. Studies with microbial fuel cells.

2. The following types of studies involve BSL-1 organisms and are exempt from prior SRC review and require no additional forms:
 a. Studies involving baker’s yeast and brewer’s yeast, except in rDNA studies.
 b. Studies involving Lactobacillus, Bacillus thuringiensis, nitrogen-fixing, oil-eating, and algae-eating bacteria introduced into their natural environment. (Not exempt if cultured in a petri dish environment.)

 c. Studies involving water or soil microbes not concentrated in media conducive to their microbial growth
 d. Studies of mold growth on food items if the experiment is terminated at the first evidence of mold.
 e. Studies of slime molds and edible mushrooms.
 f. Studies involving E. coli k–12 (and other strains of E. coli used solely as a food source for C. elegans) that are performed at school and are not subject to additional rules for recombinant DNA studies or use of antibiotic resistant organisms.

Exempt Tissues (no SRC pre-approval required)
The following types of tissue do not need to be treated as potentially hazardous biological agents:

a. Plant tissue (except those known to be toxic or hazardous)

b. Plant and non-primate established cell lines and tissue culture collections (e.g., obtained from the American Type Culture Collection). The source and/or catalog number of the cultures must be identified in the Research Plan/Project Summary.

c. Fresh or frozen meat, meat by-products obtained from food stores, restaurants, or packing houses and pasteurized milk or eggs.

d. Hair, hooves, nails and feathers

e. Teeth that have been sterilized to kill any blood-borne pathogen that may be present.

f. Fossilized tissue or archeological specimens.

g. Prepared fixed tissue

Sources of Information are available as a separate section at the end of the document.
Risk assessment defines the potential level of harm, injury or disease to plants, animals and humans that may occur when working with biological agents. The end result of a risk assessment is the assignment of a biosafety level which then determines the laboratory facilities, equipment, training, and supervision required. Risk assessment involves:

1. Assignment of the biological agent to a risk group
2. Studies involving a known microorganism must begin with an initial assignment of the microorganism to a biosafety level risk group based on information available through a literature search.
3. The study of unknown microorganisms and the use of fresh tissues relies on the expertise of the supervising adult(s).
4. Determination of the level of biological containment available to the student researcher to conduct the experimentation. (See “Levels of Biological Containment” for details.)
5. Assessment of the experience and expertise of the adult(s) supervising the student.
6. Assignment of a biosafety level for the study based on risk group of biological agent, level of biological containment available and the expertise of the Qualified Scientist or Designated Supervisor who will be supervising the project
7. Documentation of review and approval of study prior to experimentation:
 a. If a study is conducted at a non-regulated site (e.g. school), the SRC reviews the Research Plan/Project Summary.
 b. If the study was conducted at a Regulated Research Institution, and was approved by the appropriate institutional board (e.g. IBC, IACUC), the SRC reviews the institutional forms provided and documents SRC approval (Form(6A)).
 c. If a PHBA study was conducted at a Regulated Research Institution but the institution does not require review for this type of study, the SRC must review the study and document approval on Form 6A that the student received appropriate training and the project complies with Intel ISEF rules.

Classification of Biological Agents Risk Groups

Biological agents, plant or animal, are classified according to biosafety level risk groups. These classifications presume ordinary circumstances in the research laboratory, or growth of agents in small volumes for diagnostic and experimental purposes.

BSL-1 risk group contains biological agents that pose low risk to personnel and the environment. These agents are highly unlikely to cause disease in healthy laboratory workers, animals or plants. The agents require Biosafety Level 1 containment. Examples of BSL-1 organisms are: **Agrobacterium tumefaciens, Micrococcus leuteus, Neurospora crassa, Bacillus subtilis**.

BSL-2 risk group contains biological agents that pose moderate risk to personnel and the environment. If exposure occurs in a laboratory situation, the risk of spread is limited and it rarely would cause infection that could lead to serious disease. Effective treatment and preventive measures are available in the event that an infection occurs. The agents require Biosafety Level 2 containment. Examples of BSL-2 organisms are: **Mycobacterium, Streptococcus pneumoniae, Salmonella choleraesuis**.

BSL-3 risk group contains biological agents that usually cause serious disease (human, animal or plant) or that can result in serious economic consequences. Projects in the BSL-3 group are prohibited.

BSL-4 risk group contains biological agents that usually produce very serious disease (human, animal or plant) that is often untreatable. Projects in the BSL-4 group are prohibited.

Levels of Biological Containment

There are four levels of biological containment (Biosafety Level 1–4). Each level has guidelines for laboratory facilities, safety equipment and laboratory practices and techniques.

BSL-1 containment is normally found in water-testing laboratories, in high schools, and in colleges teaching introductory microbiology classes. Work is done on an open bench or in an appropriate biosafety hood. Standard microbiological practices are used when working in the laboratory. Decontamination can be achieved by treating with chemical disinfectants or by steam autoclaving. Lab coats and gloves are required. The laboratory work is supervised by an individual with general training in microbiology or a related science.

BSL-2 containment is designed to maximize safety when working with agents of moderate risk to humans and the environment. Access to the laboratory is restricted. Biological safety cabinets (Class 2, type A, BSC) must be available. An autoclave should be readily available for decontaminating waste materials. Lab coats and gloves are required; eye protection and face shields must also be worn as needed. The laboratory work must be supervised by a scientist who understands the risk associated with working with the agents involved.

BSL-3 containment is required for infectious agents that may cause serious or potentially lethal diseases as a result of exposure by inhalation. Projects in the BSL-3 group are prohibited.

BSL-4 containment is required for dangerous/exotic agents that pose high risk of life-threatening disease. Projects in the BSL-4 group are prohibited.
Hazardous Chemicals, Activities or Devices Rules
Includes DEA-controlled substances, prescription drugs, alcohol & tobacco, firearms and explosives, radiation, lasers, etc.

The following rules apply to research using hazardous chemicals, devices and activities. These include substances and devices that are regulated by local, state, country, or international law, most often with restrictions of their use by minors such as DEA-controlled substances, prescription drugs, alcohol, tobacco, firearms and explosives. Hazardous activities are those that involve a level of risk above and beyond that encountered in the student’s everyday life.

These rules are intended to protect the student researcher by ensuring proper supervision and the consideration of all potential risks so that the appropriate safety precautions are taken. Students are required to meet all standards imposed by Intel ISEF, school, local, and/or regional fair(s).

Rules for ALL Projects Involving Hazardous Chemicals, Activities and Devices

1. All projects involving hazardous chemicals, activities or devices must describe in the research plan the risk assessment process, supervision, safety precautions and methods of disposal.

2. The use of hazardous chemicals and devices and involvement in hazardous activities require direct supervision by a Designated Supervisor, except those involving DEA-controlled substances, which require supervision by a Qualified Scientist.

3. The student researcher must conduct a risk assessment in collaboration with a Designated Supervisor or Qualified Scientist prior to experimentation. This risk assessment is documented on the Risk Assessment Form 3.

4. Student researchers must acquire and use regulated substances in accordance with all local, state, U.S. federal and country laws. For further information or classification for these laws and regulations, contact the appropriate regulatory agencies.

5. For all chemicals, devices or activities requiring a Federal and/or State Permit, the student/supervisor must obtain the permit prior to the onset of experimentation. A copy of the permit must be available for review by adults supervising the project and the local, affiliated, and Intel ISEF SRCs in their review prior to competition.

6. The student researcher must minimize the impact of an experiment on the environment. Examples include using minimal quantities of chemicals that will require subsequent disposal; ensuring that all disposal is done in an environmentally safe manner and in accordance with good laboratory practices.

7. The following forms are required:
 a. Checklist for Adult Sponsor (1), Student Checklist (1A), Research Plan/Project Summary and Approval Form (1B)
 b. Regulated Research Institution Form (1C), when applicable
 c. Qualified Scientist Form (2), when applicable
 d. Risk Assessment Form (3)

Additional Rules for Specific Regulated Areas
There are additional rules for the following regulated areas:

A. DEA-Controlled Substances
The U.S. Drug Enforcement Administration (DEA) regulates chemicals that can be diverted from their intended use to make illegal drugs. Other countries may have similar regulatory bodies; students outside of the U.S. must adhere to their own country’s drug regulatory agency requirements in addition to U.S. DEA regulations. DEA-controlled substances and their schedule number are at the DEA website under Sources of Information. It is the responsibility of the student to consult this list if there is a possibility that substances used in experimentation could be regulated.

1. All studies using DEA-controlled substances must be supervised by a Qualified Scientist who is licensed by the DEA (or other international regulatory body) for use of the controlled substance.

2. All studies using DEA Schedule 1 substances (including marijuana) must have the research protocol approved by DEA before research begins. Schedule 2, 3 and 4 substances do not require protocol approval by DEA.

B. Prescription Drugs
Prescription drugs are regulated by federal or country laws to protect against inappropriate or unsafe use. Special precautions must be taken in their use for a science project as follows:

1. Students are prohibited from administering prescription drugs to human participants.

2. A veterinarian must supervise student administration of any prescription drugs to vertebrate animals.

C. Alcohol and Tobacco
The U.S. Alcohol and Tobacco Tax and Trade Bureau (TTB) regulates the production of alcohol and distribution of alcohol and tobacco products. Many such products are restricted by age for purchase, possession and consumption.

1. Fermentation studies in which minute quantities of ethyl alcohol are produced are permitted.

2. The Designated Supervisor is responsible for the acquisition, usage and appropriate disposal of the alcohol or tobacco used in the study.

3. Production of wine or beer by adults is allowable in the home and must meet TTB home production regulations. Students are allowed to design and conduct a research project, under direct parental supervision, involving the legal production of the wine or beer.

4. Students are prohibited from conducting experiments where consumable ethyl alcohol is produced by distillation. However, students are allowed to distill...
alcohol for fuel or other non-consumable products. To do so, the work must be conducted at school or a Regulated Research Institution and follow all local and country laws. See Alcohol and Tobacco Tax and Trade Bureau (TTB) website for details.

D. Firearms and Explosives
The U.S. Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF), along with state agencies, regulates the purchase and use of firearms and explosives. A firearm is defined as a small arms weapon from which a projectile is fired by gunpowder. An explosive is any chemical compound, mixture or device, the primary purpose of which is to function by explosion. Explosives include, but are not limited to, dynamite, black powder, pellet powder, detonators, and igniters.

The purchase of a firearm by a minor is generally unlawful. The use of a firearm, without proper state certification, is illegal. Students should check the training and certification requirements of individual states and countries.

1. Projects involving firearms and explosives are allowable when conducted with the direct supervision of a Designated Supervisor and when in compliance with all federal, state and local laws.

2. A fully assembled rocket motor, reload kit or propellant modules containing more than 62.5 grams of propellant are subject to the permitting, storage and other requirements of federal explosive laws and regulations.

3. Potato guns and paintball guns are not considered firearms unless they are intended to be used as weapons. However, they must be treated as hazardous devices.

E. Regulated Drones
Projects involving unmanned aircraft systems (UAS)/drones must follow all state, Federal and country laws. See the Federal Aviation Administration (FAA) for more details (www.faa.gov/uas/registration).

F. Radiation
Projects involving radionuclides (radioisotopes) and X-rays must involve a careful examination of the risks associated with the study and appropriate safety precautions must be taken. Depending upon the level of exposure, radiation released from these sources can be a health hazard.

1. All studies may not exceed the dose limits set by the Nuclear Regulatory Commission of 0.5 mrem/hr or 100 mrem/year of exposure.

2. If the voltage needed in the study is <10 kvolts, a risk assessment must be conducted. The study may be done at home or school, and SRC preapproval is not required.

3. A study using 10-25 kvolts must have a risk assessment conducted and must be preapproved by the SRC to assess safety. Such a study must be conducted in a metal chamber using a camera only, not direct view through glass. A dosimeter or radiation survey meter is required to measure radiation exposure.

4. All studies using > 25 kvolts must be conducted at an institution with a Licensed Radiation Program and must be preapproved by the Institutions’ Radiation Safety Officer or the Committee which oversees the use of ionizing radiation to ensure compliance with state and federal regulations.
1. **Hazardous Chemicals**

A proper risk assessment of chemicals must include review of the following factors:

a. **Toxicity** – the tendency of a chemical to be hazardous to health when inhaled, swallowed, injected or in contact with the skin.

b. **Reactivity** – the tendency of a chemical to undergo chemical change.

c. **Flammability** – the tendency of a chemical to give off vapors which readily ignite when used under normal working conditions.

d. **Corrosiveness** – the tendency of a chemical, upon physical contact, to harm or destroy living tissues or physical equipment.

When assessing risk, the type and amount of exposure to a chemical must be considered. For example, an individual’s allergic and genetic disposition may have an influence on the overall effect of the chemical. The student researcher must refer to Safety Data Sheets provided by the vendor (SDS) to ensure that proper safety precautions are taken. Some SDS sheets (e.g., Flinn) rank the degree of hazard associated with a chemical. This rating may assist students and adult sponsors in determining risk associated with the use of a chemical.

A risk assessment (documented on Form 3) must include proper disposal methods for the chemicals used in an experiment. The Flinn Catalog (referenced in the Sources of Information section) provides information for the proper disposal of chemicals. If applicable, the student researcher must incorporate in the research plan disposal procedure required by federal and state guidelines.

Environmentally Responsible Chemistry

The mission of environmentally responsible (green) chemistry is to avoid the use or production of hazardous substances during chemical process. The principles of green chemistry are described on the EPA website in the Sources of Information section. Whenever possible the following principles should be incorporated into the research plan.

- Waste prevention
- Use of the safest possible chemicals and products
- Design of the least possible hazardous chemical syntheses
- Use renewable materials
- Use catalysts in order to minimize chemical usage
- Use of solvents and reaction conditions that are safe as possible
- Maximization of energy efficiency
- Minimization of accident potential

2. **Hazardous Devices**

The documentation of risk assessment (Form 3) is required when a student researcher works with potentially hazardous/dangerous equipment and/or other devices, in or outside a laboratory setting that require a moderate to high level of expertise to ensure their safe usage. Some commonly used devices (Bunsen burners, hot plates, saws, drills, etc.) may not require a documented risk assessment, assuming that the student researcher has experience working with the device. Use of other potentially dangerous devices such as high vacuum equipment, heated oil baths, NMR equipment, and high temperature ovens must have documentation of a risk assessment. It is recommended that all student designed inventions also have documentation of a risk assessment.

3. **Radiation**

A risk assessment (documented on Form 3) must be conducted when a student’s project involves radiation beyond that normally encountered in everyday life. Non-ionizing radiation includes the spectrum of ultraviolet (UV), visible light, infrared (IR), microwave (NW), radiofrequency (RF) and extremely low frequency (ELF).
Engineering Projects Guide
Use this information to help determine the requirements of Engineering Projects and potential areas that will require pre-approval and/or extra safety precautions.

Engineering Project Checklist
Consider the answers to the questions below. If the response is yes, then the project may fall under more specific rules and those sections of the International Rules & Guidelines should be consulted.

Hazardous Chemicals, Activities and Devices
- Will your project involve any of the following:
 - DEA-controlled Substances
 - Firearms and Explosives
 - Prescription Drugs
 - Alcohol & Tobacco
 - Regulated Drones
 - Radiation

Vertebrate Animals
- Does your project include any interaction with vertebrate animals in any phase of the project?

Potentially Hazardous Biological Agents
- Does your project include any collection, examination or handling of microorganisms, and/or fresh or frozen tissue, primary cell cultures, blood, blood products or body fluids?
- Are you going to culture or isolate any substance, known or unknown?

Human Participants
- Do you intend to gather background knowledge through a survey or interviews to understand the potential use and needs for your project design?
- Are you going to ask for opinions or suggestions on your project design at any point of the project?
- Are you going to test your project (device, app, invention, prototype, etc.)? If yes, does it require persons to interact with it other than yourself?
- Does your project intend to gather personal data/have a health benefit to the user?
Sources of Information for All Projects

1. United States Patent and Trade Office
 Customer Service: 1-800-786-9199 (toll-free); 571-272-1000 (local); 571-272-9950 (TTY)
 www.uspto.gov
 www.uspto.gov/patents/process/index.jsp

2. European Patent Office
 www.epo.org
 www.epo.org/applying/basics.html

3. The Mad Scientist Network at Washington University School of Medicine:
 www.madsci.org

4. ANS Task Force
 www.anstaskforce.gov
 Aquatic Nuisance Species (ANS) Task Force

5. APHIS
 www.aphis.usda.gov/
 Animal and Plant Health Inspection Service
 Invasive Species List

6. Invasive Species Specialist Group
 www.issg.org
 The Global Invasive Species database contains invasive species information supplied by experts from around the world.

7. Invasive Species Information
 www.invasivespeciesinfo.gov/resources/lists.shtml
 Provides information for species declared invasive, noxious, prohibited, or harmful or potentially harmful.

 http://www.successwithscience.org
 ISBN 0-9633504-8-X

Human Participants

 Can be purchased from: www.amazon.com

3. NIH tutorial, “Protecting Human Research Participants”

4. Belmont Report, April 18, 1979
 www.hhs.gov/ohrp/humansubjects/guidance/belmont.html

6. American Psychological Association
 750 First Street, NE Washington, DC 20002-4242
 phone: 202-336-5500; 800-374-2721
 www.apa.org
 Information for students:
 www.apa.org/science/leadership/students/information.aspx
 Information regarding publications:

7. Educational and Psychological Testing
 Testing Office for the APA Science Directorate
 phone: 202-336-6000
 email: testing@apa.org

8. The Children’s Online Privacy Protection Act of 1998 (COPPA)
 www.ftc.gov/privacy/coppafaq.shtm

Vertebrate Animals

Animal Care and Use

1. Laboratory Animals, Institute of Laboratory Animal Research (ILAR), Commission on Life Sciences, National Research
 http://dels.nas.edu/ilar

3. Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research (2003), Institute for Laboratory Animal Research (ILAR),
 To order these ILAR publications contact:
 National Academies Press
 500 Fifth Street, NW
 Washington, DC 20055
 phone: 888-624-8373 or 202-334-3313; fax: 202-334-2451
 www.nap.edu

4. Federal Animal Welfare Act (AWA)
 7 U.S.C. 2131–2157
 Subchapter A – Animal Welfare (Parts I, II, III)
 Document is available from:
 USDA/APHIS/AC
 4700 River Road, Unit 84
 Riverdale, MD 20737-1234
 email: ace@aphis.usda.gov
 phone: 301-734-7833; fax: 301-734-4978

5. Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching (Agri-Guide)
 Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC International)
 [https://www.aaalac.org/](http://www.aaalac.org/)
 [https://www.aaalac.org/about/Ag_Guide_3rd_ed.pdf](http://www.aaalac.org/about/Ag_Guide_3rd_ed.pdf)
 www.fisheries.org

7. **Euthanasia Guidelines**
 AVMA Guidelines on Euthanasia (2013)
 American Veterinary Medical Association
 www.avma.org/KB/Policies/Documents/euthanasia.pdf

Alternative Research and Animal Welfare

1. **The National Library of Medicine** provides computer searches through MEDLINE:
 Reference & Customer Services
 National Library of Medicine
 8600 Rockville Pike
 Bethesda, MD 20894
 888-FIND-NLM or 888-346-3656; 301-594-5983;
 email: info@ncbi.nlm.nih.gov
 www.nlm.nih.gov

 Animal Welfare Information Center
 National Agriculture Library
 10301 Baltimore Avenue, Room 410
 Beltsville, MD 20705-2351
 phone: 301-504-6212, fax: 301-504-7125
 email: awic@ars.usda.gov
 www.nal.usda.gov/awic

3. **Institute of Laboratory Animal Resources** (ILAR) provides a variety of information on animal sources, housing and handling standards, and alternatives to animal use through annotated bibliographies published quarterly in ILAR Journal.
 ILAR - The Keck Center of the National Academies
 500 Fifth Street, NW, Keck 687
 Washington, DC 20001
 phone: 202-334-2590, fax: 202-334-1687
 email: ILAR@nas.edu
 http://dels.nas.edu/ilar

4. Quarterly bibliographies of Alternatives to the Use of Live Vertebrates in Biomedical Research and Testing may be obtained from:
 Specialized Information Services
 NLM/NIH
 2 Democracy Plaza, Suite 510
 6707 Democracy Blvd., MSC 5467
 Bethesda, MD 20892-5467
 phone: 301-496-1131; Fax: 301-480-3537
 email: tehip@teh.nlm.nih.gov

5. **Johns Hopkins Center for Alternatives to Animal Testing** (CAAT) has worked with scientists since 1981 to find new methods to replace the use of laboratory animals in experiments, reduce the number of animals tested, and refine necessary tests to eliminate pain and distress.
 email: caat@jhsph.edu
 http://caat.jhsph.edu/

6. **Quality Assurance Manuals** (for appropriate species)
 Such as:
 Poultry: https://www.bordbia.ie/industry/farmers/quality/PoultrySchemeStandards/Poultry%20Producer.pdf

Potentially Hazardous Biological Agents

1. American Biological Safety Association: ABSA Risk Group Classification – list of organisms
 www.absa.org

2. American Type Culture Collection (ATCC)
 www.atcc.org

3. Bergey's Manual of Systematic Bacteriology website – follow the links for resources and microbial databases for a collection of international websites of microorganisms and cell cultures.
 www.bergeys.org/resources.html

4. Biosafety in Microbiological and Biomedical Laboratories (BMBL) - 4th Edition. Published by CDC-NIH
 www.cdc.gov/biosafety/publications/bmbl5/BMBL.pdf

5. World Health Organization Laboratory Safety Manual
 www.who.int/diagnostics_laboratory/guidance/en

6. Canada – Agency of Public Health – list of non-pathogenic organisms

7. American Society for Microbiology
 https://www.asm.org/division/w/web-sites.htm

8. Microbiology Society
 Charles Darwin House
 12 Roger Street
 London
 WC1N 2JU
 UK
 education@microbiologysociety.org
 http://microbiologyonline.org

9. **NIH Guidelines for Research Involving Recombinant DNA Molecules. Published by National Institutes of Health.**

10. OSHA – Occupational Health and Safety Administration
 www.osha.gov

Hazardous Chemicals, Activities or Devices

General Lab/Chemical Safety

 Order from (first copy free of charge):
 American Chemical Society
 Publications Support Services
 1155 16th Street, NW
 Washington, DC 20036
 phone: 202-872-4000 or 800-227-5558
 email: help@acs.org
 www.acs.org/education
2. General
Howard Hughes Medical Institute has resources for working with cell cultures, radioactive materials and other laboratory materials.
http://www.hhmi.org/developing-scientists/resources

3. Environmental Protection Agency (EPA) website for green chemistry
www.epa.gov/greenchemistry

4. Safety Data Sheets (SDS)
www.flinnci.com/msds-search.aspx
A directory of SDS sheets from Flinn Scientific Inc. that includes a ranking of hazard level and disposal methods.

www.ilpi.com/msds/index.html - A listing of numerous sites that have free downloads of MSDS sheets.

5. Pesticides
National Pesticide Information Center
http://npic.orst.edu/ingred/products.html
Describes the various types of pesticides and the legal requirements for labelling. Provides links and phone numbers to get additional information.

Environmental Protection Agency
http://iaspub.epa.gov/apex/pesticides/f?p=PPLS:1
A database of product labels. Enter the product name or company name to view the approved label information of pesticides which are registered with the agency.

6. DEA Controlled Substances
Drug Enforcement Agency website:
www.justice.gov/dea/index.htm
Controlled Substance Schedules – a list of controlled substances:
www.deadiversion.usdoj.gov/schedules/

7. Alcohol, Tobacco, Firearms, and Explosives
Alcohol and Tobacco Tax and Trade Bureau
www.ttb.gov
Bureau of Alcohol, Tobacco, Firearms and Explosives
www.atf.gov

8. Radiation
Radiation Studies Information (CDC)
www.cdc.gov/nceh/radiation/default.htm

9. CDC Laboratory Safety Manuals
www.cdc.gov/biosafety/publications/index.htm

10. Occupational Safety and Health Administration
www.osha.gov
Safety and Health Topics:
www.osha.gov/SLTC
www.osha.gov/SLTC/reactivechemicals/index.html
www.osha.gov/SLTC/laserhazards/index.html
www.osha.gov/SLTC/radiationionizing/index.html

11. U.S. Nuclear Regulatory Commission
Material Safety and Inspection Branch
One White Flint North
11555 Rockville Pike
Rockville, MD 20852
phone: 301-415-8200; 800-368-5642
www.nrc.gov
Intel ISEF Display & Safety Regulations
Please address any questions regarding Intel ISEF Display & Safety Regulations to displayandsafety@societyforscience.org

Display & Safety Committee Mission
The mission of this committee is to ensure that all competitors qualify for competition according to the rules established in conjunction with the Scientific Review Committee and Society for Science & the Public.

The Intel ISEF Display & Safety Committee will offer guidance on Display & Safety issues for projects approved by the SRC to compete in the Intel ISEF. Occasionally, the Intel ISEF Display & Safety Committee may require students to make revisions to conform to Display & Safety regulations. Persistent issues will be directed to a committee of individuals which may include Society for Science & the Public (SSP) personnel, Display & Safety (D & S) and/or Scientific Review Committee (SRC) executive committee members.

The following regulations must be adhered to when a finalist exhibits a project at Intel ISEF. All projects must adhere to the Display & Safety requirements of the affiliated fair(s) in which they compete to qualify for participation in the Intel ISEF. Affiliated fairs may have additional restrictions or requirements. Knowledge of these requirements is the responsibility of the Finalist, Adult Sponsor, and Fair Director.

Display Regulations

Maximum Size of Project
Depth (front to back): 30 inches or 76 centimeters
Width (side to side): 48 inches or 122 centimeters
Height (floor to top): 108 inches or 274 centimeters

Please be aware when ordering posters that the mechanism that supports the poster should conform to the maximum size limitations stated above.

1. All project materials and support mechanisms must fit within the project dimensions (including table covers).
2. Fair-provided tables at the Intel ISEF will not exceed a height of 36 inches (91 centimeters).
3. If a table is used it becomes part of the project and must not exceed the allowed dimensions.
4. Nothing can be attached to the back curtain.
5. All demonstrations must be within the confines of the finalist's booth space. When not being demonstrated, all project components must be returned to the project display and must fit within allowable dimensions as defined above.
6. Projects can be continued under the table BUT this area is not to be used for storage.

Position of Project
The fair provided table or freestanding display must be parallel to, and positioned at, the back curtain of the booth. Projects may NOT lean against the back curtain.

Forms Required to be Visible and Vertically Displayed at the Project Booth
The placement of the required forms may include the front edge of the table, the display board, or in a free-standing acrylic frame placed on the table top.

Forms required at all projects:
1. An official Abstract and Certification as approved (stamped/embossed) by the Intel ISEF Scientific Review Committee.
 a. Upon SRC approval, the stamped/embossed Official Abstract and Certification will be provided.
2. Continuation/Research Progression Projects Form (7)
 a. If a study is a continuation/research progression, the Continuation/Research Progression Projects Form (7) must be completed and vertically displayed at the project booth.

Additional Forms required (only when applicable):
1. Regulated Research Institutional/Industrial Setting Form (1C)
 a. If work was conducted in a regulated research institution, industrial setting or any work site other than home, school or field at any time during the current Intel ISEF project year, the Regulated Research Institutional/Industrial Setting Form (1C) must be completed and vertically displayed at the project booth.
 b. The information provided by the mentor on Form 1C may be referenced to confirm that the information provided on the project board is that of the finalist. Only minimal reference to mentor’s or another researcher’s work is allowable and must only reflect background information or be used to clarify differences between finalist’s and others’ work.
2. Intel ISEF Project Set-up Approval Form (received on-site at the Fair)
 a. This form documents the project as approved by the Scientific Review Committee and is used to document the Display & Safety Committee's review and final approval.
 b. This form must be signed by the Finalist and the Display and Safety Committee member at the time of inspection.

The abstract must be the official Intel International Science and Engineering Fair Abstract and embossed/ stamped by the Intel ISEF Scientific Review Committee.

No other format or version of your approved Abstract & Certification will be allowed for any purpose at the Intel ISEF. Abstract handouts to judges and to the public are limited to UNALTERED photocopies of the official abstract and certification.

It is the recommendation of the Display & Safety Committee to NOT include the word “abstract” nor the abstract itself when preparing backboards or posters prior to the fair.

The Intel ISEF Display & Safety Committee will offer guidance on Display & Safety issues for projects approved by the SRC to compete in the Intel ISEF.
b. The display board and abstract must reflect only the current year’s work. The project title displayed in the finalist’s booth may mention years of continuing research (for example, “Year Two of an Ongoing Study”).

c. Reference to past work on the display board must be limited to summative past conclusion and its comparison to the current year data set. No raw data from previous years may be publicly displayed; however, it may be included in the student research notebooks and/or logbooks if properly labeled.

Forms Required at Project but not Displayed

1. Forms, excluding those listed above, that were required for the Scientific Review Committee approval should not be vertically displayed, but must be available in the booth in case asked for by a judge or other Intel ISEF official. These forms include, but are not limited to, Checklist for Adult Sponsor (1), Student Checklist (1A), Research Plan, Approval Form (1B), and a photograph/video release form.

2. A photograph/video release form signed by the subject is required for visual images of humans (other than the finalist) displayed as part of the project.

Forms NOT to be at the Project Display Booth or in the Exhibit Hall

Completed informed consent/assent forms for a human participant study are NOT to be displayed and should NOT be present at the project display. The Finalist may include a sample (incomplete) form in their logbook or research notebook but under NO CIRCUMSTANCE should the completed informed consent/assent forms for a human participant be in the Exhibit Hall.

Photograph/Image Display Requirements

1. Any photograph/visual image/chart/table and/or graph is allowed if:

a. It is not deemed offensive or inappropriate (which includes images/photographs showing invertebrate or vertebrate animals/humans in surgical, necrotizing or dissection situations) by the Scientific Review Committee, the Display & Safety Committee, or Society for Science & the Public.

b. It has a credit line of origin (“Photograph taken by…” or “Image from…”) and is vertically displayed. If all images, etc. displayed were created by the finalist or are from the same source, one credit line prominently and vertically displayed on the backboard/poster or tabletop is sufficient. All images MUST BE properly cited. This includes photographs and/or visual depictions of the finalist or photographs and/or visual depictions of others for which a signed photo/video release form is in a notebook or logbook at the project booth. These signed consent forms must be available upon request during set-up and the inspection process, but may not be displayed.

c. Sample release text: “I consent to the use of visual images (photos, videos, etc.) involving my participation/my child’s participation in this research.”

2. Finalists using any presentation or demonstration outside of a project board must be prepared to show the entire presentation to the Display & Safety Inspectors before the project is approved. All aforementioned rules apply to this presentation and the presentation may not be altered in any way after the final Display & Safety inspection. Examples of presentations that require approval include, but are not limited to PowerPoint, Prezi, Keynote, YouTube, software program/simulation and other images and/or graphics displayed on a computer screen or other non-print delivery method.

Items/Materials Not Allowed on Display or at Project Booth

1. Any information on the project display or items that are acknowledgments, self-promotions or external endorsements are not allowed in the project booth. This includes:

a. The use of logos including known commercial brands, institutional crests or trademarks, flags unless integral to the project and approved by the SRC via inclusion in the Official Abstract and Certification.

b. Personalized graphic/logo that is developed to indicate a commercial purpose or viability of an established or proposed business associated with the project, unless student-created in which it can be displayed on the board only once.

c. Any reference to an institution or mentor that supported your research except as provided in the official Intel ISEF paperwork, most notably Form 1C.

d. Any reference to patent status of the project.

e. Any items intended for distribution such as disks, CDs, flash drives, brochures, booklets, endorsements, give-away items, business cards, or printed materials designed to be distributed to judges or the public. Once again, handouts to judges and to the public are limited to UNALTERED photocopies of the official abstract and certification.

2. Any awards or medals, except for past or present Intel ISEF medals that may be worn by the finalist.

3. Postal addresses, World Wide Web, email and/or social media addresses, QR codes, telephone and/or fax numbers of a project or finalist. Note: The only personal information that is permissible to include on the display is information that is also included on the Official Abstract and Certification (Finalist Name, School, City, State, Country). Information regarding finalist’s age and grade are not permitted.

4. Active Internet or email connections as part of displaying or operating the project at the Intel ISEF.

5. Any changes, modifications, or additions to projects including any attempt to uncover, replenish or return removed language or items after the approval by the Display & Safety Committee and the Scientific Review Committee has been received is prohibited.

a. Display & Safety inspections will include recording photographic evidence of the approved Project Display and Project booth.

b. Finalists who do not adhere to this signed agreement on the Intel ISEF Project Set-up Approval Form regarding this regulation will fail to qualify for competition.
Safety Regulations
Not Allowed at Project or Booth
Note: In the case in which a Finalist’s Project includes an item that is prohibited from display, please consider taking photographs and/or documenting the significance of the prohibited item through video.
1. Living organisms, including plants
2. Glass
3. Soil, sand, rock, cement and/or waste samples, even if permanently encased in a slab of acrylic
4. Taxidermy specimens or parts
5. Preserved vertebrate or invertebrate animals
6. Human or animal food
7. Human/animal parts or body fluids (for example, blood, urine)
8. Plant materials (living, dead, or preserved) that are in their raw, unprocessed, or non-manufactured state
9. All chemicals including water. Absolutely no liquids can be utilized in the Project Display
10. All hazardous substances or devices (Example: poisons, drugs, firearms, weapons, ammunition, reloading devices, grease/oil and sublimating solids such as dry ice)
11. Items that may have contained or been in contact with hazardous chemicals (Exception: Item may be permitted if professionally cleaned and document for such cleaning is available) Filters (including microbial) may not be displayed unless the Display & Safety Committee can reasonably determine that the device was cleaned or was never used (please include receipts in your notebooks and/or logbooks)
12. Sharp items (for example, syringes, needles, pipettes, knives)
13. Flames and highly flammable materials
14. Batteries with open-top cells or wet cells
15. Drones or any flight-capable apparatus unless the propulsion power source removed.
16. 3D Printers unless the power source is removed.
17. Inadequately insulated apparatus capable of producing dangerous temperatures are not permitted
18. Any apparatus with belts, pulleys, chains, or moving parts with tension or pinch points that are not appropriately shielded
19. Any display items that are deemed distracting (i.e. sounds, lights, odors, etc.)
20. Personal items or packaging materials stored underneath the booth
21. Any apparatus deemed unsafe by the Scientific Review Committee, the Display & Safety Committee, or the Society (Example: large vacuum tubes or dangerous ray-generating devices, empty tanks that previously contained combustible liquids or gases, pressurized tanks, 3D printers etc.)

Electrical Regulations
1. Electrical power supplied to the project is 120 or 220 Volt, AC, single phase, 60 cycle. No multi-phase will be available or shall be used. Maximum circuit amperage/wattage available is determined by the electrical circuit capacities of the exhibit hall and may be adjusted on-site by the Display & Safety Committee. For all electrical regulations, “120 Volt AC” or “220 Volt AC” is intended to encompass the corresponding range of voltage as supplied by the facility in which the Intel ISEF is being held.
2. Electrical devices must be protectively enclosed. Any enclosure must be non-combustible. All external non-current carrying metal parts must be grounded.
3. Energized wiring, switches, and metal parts must have adequate insulation and over-current safety devices (such as fuses) and must be inaccessible to anyone other than the finalist. Exposed electrical equipment or metal that possibly may be energized must be shielded with a non-conducting material or with a grounded metal box to prevent accidental contact.
4. Decorative lighting or illumination is discouraged. If used, lighting must be as low a voltage as possible and must be LED lighting that does not generate heat. Light bulbs are prohibited. When student is not at the exhibit, all electrical power must be disconnected, or power bars must be switched off (Exception: during pre-judging audio visual displays may be available.)
5. An insulating grommet is required at the point where any wire or cable enters any enclosure.
6. No exposed live circuits over 36 volts are allowed.
7. There must be an accessible, clearly visible on/off switch or other means of quickly disconnecting from the 120 or 220 Volt power source.

Laser/Laser Pointer Regulations
Any Class 1 or Class 2 lasers, along with only Class 3A or 3R lasers, are allowed to be used provided a finalist avoids indiscriminate exposure to other finalists, judges, or visitors (except if passed through magnifying optics such as microscopes and telescopes, in which case they may not be used). No other lasers may be used or displayed.
1. Lasers must be labeled by the manufacturer so that power output can be inspected. Lasers without labels will NOT be permitted.
2. LEDs that consume over 1 watt, unless they are in a commercial light bulb/fixture or otherwise shielded, will not be allowed.
3. Handheld lasers are NOT permitted.
4. Lasers will be confiscated with no warning if not used in a safe manner.
In ADDITION to the basic form requirements for ALL Projects and any other requirements due to specific areas of research, an Abstract & Certification is required at the conclusion of research. Details on this requirement follow.

Completing the Abstract

After finishing research and experimentation, you are required to write a (maximum) 250 word, one-page abstract. For Intel ISEF, this abstract is written in the online Finalist Questionnaire portal and submitted electronically.

It is recommended that it include the following:

- purpose of the experiment
- procedure
- data
- conclusions

It may also include any possible research applications. Only minimal reference to previous work may be included.

An abstract must not include the following:

- acknowledgments (including naming the research institution and/or mentor with which you were working), or self-promotions and external endorsements
- logos or proper names of commercial products
- work or procedures done by the mentor

Completing the Certification

At the bottom of the Abstract & Certification form there are six questions. Please read each carefully and answer appropriately. The Intel ISEF Scientific Research Committee will review and approve the abstract and answers to the questions.

Revisions are permitted via the online portal through late April (please reference the system for current year deadlines.)

Once approved, two copies of the Intel ISEF Abstract & Certification will be provided with a gold embossed seal; only this version of the abstract may be displayed or distributed.

NOTE: Your abstract must be on the Intel International Science and Engineering Fair Abstract & Certification form and have the Intel ISEF Scientific Review Committee approval seal before it is displayed or handed out. No other format or version of your approved Abstract will be allowed for any purpose at the Intel ISEF.

Intel ISEF Sample Abstract & Certification

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Project ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finalist Name(s)</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Animal Sciences</td>
</tr>
<tr>
<td></td>
<td>Behavioral and Social Sciences</td>
</tr>
<tr>
<td></td>
<td>Biochemistry</td>
</tr>
<tr>
<td></td>
<td>Biomedical and Health Sciences</td>
</tr>
<tr>
<td></td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td></td>
<td>Cellular & Molecular Biology</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
</tr>
<tr>
<td></td>
<td>Computational Biology and Bioinformatics</td>
</tr>
<tr>
<td></td>
<td>Earth & Environmental Sciences</td>
</tr>
<tr>
<td></td>
<td>Embedded Systems</td>
</tr>
<tr>
<td></td>
<td>Energy Chemical</td>
</tr>
<tr>
<td></td>
<td>Energy Physical Engineering Mechanics</td>
</tr>
<tr>
<td></td>
<td>Environmental Engineering</td>
</tr>
<tr>
<td></td>
<td>Materials Science</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
</tr>
<tr>
<td></td>
<td>Microbiology</td>
</tr>
<tr>
<td></td>
<td>Physics and Astronomy</td>
</tr>
<tr>
<td></td>
<td>Plant Sciences</td>
</tr>
<tr>
<td></td>
<td>Robotics & Intelligent Machines</td>
</tr>
<tr>
<td></td>
<td>Systems Software</td>
</tr>
<tr>
<td></td>
<td>Translational Medical Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finalist School, City, State/Province, Country</th>
<th>Abstract Body</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. As a part of this research project, the student directly handled, manipulated, or interacted with (check all that apply):</td>
</tr>
<tr>
<td></td>
<td>- human participants</td>
</tr>
<tr>
<td></td>
<td>- potentially hazardous biological agents</td>
</tr>
<tr>
<td></td>
<td>- vertebrate animals</td>
</tr>
<tr>
<td></td>
<td>- microorganisms</td>
</tr>
<tr>
<td></td>
<td>- rDNA</td>
</tr>
<tr>
<td></td>
<td>- tissue</td>
</tr>
<tr>
<td></td>
<td>2. This abstract describes only procedures performed by me/us, reflects my/our own independent research, and represents one year’s work only.</td>
</tr>
<tr>
<td></td>
<td>- yes</td>
</tr>
<tr>
<td></td>
<td>- no</td>
</tr>
<tr>
<td></td>
<td>3. I/We worked or used equipment in a regulated research institution or industrial setting.</td>
</tr>
<tr>
<td></td>
<td>- yes</td>
</tr>
<tr>
<td></td>
<td>- no</td>
</tr>
<tr>
<td></td>
<td>4. This project is a continuation of previous research.</td>
</tr>
<tr>
<td></td>
<td>- yes</td>
</tr>
<tr>
<td></td>
<td>- no</td>
</tr>
<tr>
<td></td>
<td>5. My display board includes non-published photographs/visual depictions of humans (other than myself):</td>
</tr>
<tr>
<td></td>
<td>- yes</td>
</tr>
<tr>
<td></td>
<td>- no</td>
</tr>
<tr>
<td></td>
<td>6. I/We hereby certify that the abstract and responses to the above statements are correct and properly reflect my/our own work.</td>
</tr>
<tr>
<td></td>
<td>- yes</td>
</tr>
<tr>
<td></td>
<td>- no</td>
</tr>
</tbody>
</table>

FOR INTEL ISEF OFFICIAL USE ONLY

This form may not be relevant for your regional or state fair; please refer to instructions from your affiliated fair.
Intel ISEF Categories and Subcategories

The categories have been established with the goal of better aligning judges and student projects for the judging at the Intel ISEF. Local, regional, state and country fairs may or may not choose to use these categories, dependent on the needs of their area. Please check with your affiliated fair(s) for the appropriate category listings at that level of competition.

Please visit our website at student.societyforscience.org/intel-isef-categories-and-subcategories for a full description and definition of the Intel ISEF categories:

<table>
<thead>
<tr>
<th>ANIMAL SCIENCES (ANIM)</th>
<th>CHEMISTRY (CHEM)</th>
<th>ENERGY: PHYSICAL (EGPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Behavior</td>
<td>Analytical Chemistry</td>
<td>Hydro Power</td>
</tr>
<tr>
<td>Cellular Studies</td>
<td>Computational Chemistry</td>
<td>Nuclear Power</td>
</tr>
<tr>
<td>Development</td>
<td>Environmental Chemistry</td>
<td>Solar</td>
</tr>
<tr>
<td>Ecology</td>
<td>Inorganic Chemistry</td>
<td>Sustainable Design</td>
</tr>
<tr>
<td>Genetics</td>
<td>Materials Chemistry</td>
<td>Thermal Power</td>
</tr>
<tr>
<td>Nutrition and Growth</td>
<td>Organic Chemistry</td>
<td>Wind</td>
</tr>
<tr>
<td>Physiology</td>
<td>Physical Chemistry</td>
<td>Other</td>
</tr>
<tr>
<td>Systematics and Evolution</td>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BEHAVIORAL AND SOCIAL SCIENCES (BEHA)</th>
<th>COMPUTATIONAL BIOLOGY AND BIOINFORMATICS (CBIO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical and Developmental Psychology</td>
<td>Computational Biomodeling</td>
</tr>
<tr>
<td>Cognitive Psychology</td>
<td>Computational Epidemiology</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>Computational Evolutionary Biology</td>
</tr>
<tr>
<td>Physiological Psychology</td>
<td>Computational Neurosciences</td>
</tr>
<tr>
<td>Sociology and Social Psychology</td>
<td>Computational Pharmacology</td>
</tr>
<tr>
<td></td>
<td>Genomics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOCHEMISTRY (BCHM)</th>
<th>EARTH AND ENVIRONMENTAL SCIENCES (EAEV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Biochemistry</td>
<td>Atmospheric Science</td>
</tr>
<tr>
<td>General Biochemistry</td>
<td>Climate Science</td>
</tr>
<tr>
<td>Medical Biochemistry</td>
<td>Environmental Effects on Ecosystems</td>
</tr>
<tr>
<td>Structural Biochemistry</td>
<td>Geosciences</td>
</tr>
<tr>
<td></td>
<td>Water Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOLOGICAL AND HEALTH SCIENCES (BMED)</th>
<th>EMBEDDED SYSTEMS (EBED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell, Organ, and Systems Physiology</td>
<td>Circuits</td>
</tr>
<tr>
<td>Genetics and Molecular Biology of Disease</td>
<td>Internet of Things</td>
</tr>
<tr>
<td>Immunology</td>
<td>Microcontrollers</td>
</tr>
<tr>
<td>Nutrition and Natural Products</td>
<td>Networking and Data Communications</td>
</tr>
<tr>
<td>Pathophysiology</td>
<td>Optics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOMEDICAL AND HEALTH SCIENCES (BMED)</th>
<th>ENGINNEERING MECHANICS (ENMC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Imaging</td>
<td>Aerospace and Aeronautical Engineering</td>
</tr>
<tr>
<td>Cell and Tissue Engineering</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Synthetic Biology</td>
<td>Computational Mechanics</td>
</tr>
<tr>
<td></td>
<td>Control Theory</td>
</tr>
<tr>
<td></td>
<td>Ground Vehicle Systems</td>
</tr>
<tr>
<td></td>
<td>Industrial Engineering-Processing</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td>Naval Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOLOGICAL AND HEALTH SCIENCES (BMED)</th>
<th>ENVIRONMENTAL ENGINEERING (ENEV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biopolymers</td>
<td>Bioremediation</td>
</tr>
<tr>
<td></td>
<td>Land Reclamation</td>
</tr>
<tr>
<td></td>
<td>Pollution Control</td>
</tr>
<tr>
<td></td>
<td>Recycling and Waste Management</td>
</tr>
<tr>
<td></td>
<td>Water Resources Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOLOGICAL AND HEALTH SCIENCES (BMED)</th>
<th>MATERIALS SCIENCE (MATS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologics and Regen Medicine</td>
<td>Biomaterials</td>
</tr>
<tr>
<td>Biomechanics</td>
<td>Ceramic and Glasses</td>
</tr>
<tr>
<td>Biomedical Devices</td>
<td>Composite Materials</td>
</tr>
<tr>
<td>Biomedical Imaging</td>
<td>Computation and Theory</td>
</tr>
<tr>
<td>Cell and Tissue Engineering</td>
<td>Electronic, Optical and Magnetic Materials</td>
</tr>
<tr>
<td>Synthetic Biology</td>
<td>Nanomaterials</td>
</tr>
<tr>
<td></td>
<td>Polymers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOMEDICAL ENGINEERING (ENBM)</th>
<th>MATHMATICS (MATH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomaterials and Regen Medicine</td>
<td>Analysis</td>
</tr>
<tr>
<td>Biomechanics</td>
<td>Combinatorics, Graph Theory, and Game Theory</td>
</tr>
<tr>
<td>Biomedical Devices</td>
<td>Geometry and Topology</td>
</tr>
<tr>
<td>Biomedical Imaging</td>
<td>Number Theory</td>
</tr>
<tr>
<td>Cell and Tissue Engineering</td>
<td>Probability and Statistics</td>
</tr>
<tr>
<td>Synthetic Biology</td>
<td>Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOMEDICAL ENGINEERING (ENBM)</th>
<th>MICROBIOLOGY (MCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Physiology</td>
<td>Antimicrobials and Antibiotics</td>
</tr>
<tr>
<td>Cellular Immunology</td>
<td>Applied Microbiology</td>
</tr>
<tr>
<td>Genetics</td>
<td>Bacteriology</td>
</tr>
<tr>
<td>Molecular Biology</td>
<td>Environmental Microbiology</td>
</tr>
<tr>
<td>Neurobiology</td>
<td>Microbial Genetics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOLOGICAL AND HEALTH SCIENCES (BMED)</th>
<th>PHYSICS AND ASTRONOMY (PHYS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biocomputational and Bioinformatics</td>
<td>Astronomy and Cosmology</td>
</tr>
<tr>
<td></td>
<td>Atomic, Molecular, and Optical Physics</td>
</tr>
<tr>
<td></td>
<td>Biological Physics</td>
</tr>
<tr>
<td></td>
<td>Condensed Matter and Materials Mechanics</td>
</tr>
<tr>
<td></td>
<td>Nuclear and Particle Physics</td>
</tr>
<tr>
<td></td>
<td>Theoretical, Computational and Quantum Physics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOLOGICAL AND HEALTH SCIENCES (BMED)</th>
<th>PLANT SCIENCES (PLNT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biolytics and Regen Medicine</td>
<td>Agriculture and Agromony</td>
</tr>
<tr>
<td>Biomechanics</td>
<td>Ecology</td>
</tr>
<tr>
<td>Biomedical Devices</td>
<td>Genetics/Breeding</td>
</tr>
<tr>
<td>Biomedical Imaging</td>
<td>Growth and Development</td>
</tr>
<tr>
<td>Cell and Tissue Engineering</td>
<td>Pathology</td>
</tr>
<tr>
<td>Synthetic Biology</td>
<td>Plant Physiology</td>
</tr>
<tr>
<td></td>
<td>Systems and Evolution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOMEDICAL ENGINEERING (ENBM)</th>
<th>ROBOTICS AND INTELLIGENT MACHINES (ROBO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologics and Regen Medicine</td>
<td>Biomechanics</td>
</tr>
<tr>
<td>Biomechanics</td>
<td>Cognitive Systems</td>
</tr>
<tr>
<td>Biomedical Devices</td>
<td>Control Theory</td>
</tr>
<tr>
<td>Cell and Tissue Engineering</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>Synthetic Biology</td>
<td>Robot Kinematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOLOGICAL AND HEALTH SCIENCES (BMED)</th>
<th>SYSTEMS SOFTWARE (SOFT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biocomputational and Bioinformatics</td>
<td>Algorithms</td>
</tr>
<tr>
<td></td>
<td>Cybersecurity</td>
</tr>
<tr>
<td></td>
<td>Databases</td>
</tr>
<tr>
<td></td>
<td>Human/Machine Interface</td>
</tr>
<tr>
<td></td>
<td>Languages and Operating Systems</td>
</tr>
<tr>
<td></td>
<td>Mobile Apps</td>
</tr>
<tr>
<td></td>
<td>Online Learning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOLOGICAL AND HEALTH SCIENCES (BMED)</th>
<th>TRANSLATIONAL MEDICAL SCIENCES (TMED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biolytics and Regen Medicine</td>
<td>Disease Detection and Diagnosis</td>
</tr>
<tr>
<td>Biomechanics</td>
<td>Disease Prevention</td>
</tr>
<tr>
<td>Biomedical Devices</td>
<td>Disease Treatment and Therapies</td>
</tr>
<tr>
<td>Cell and Tissue Engineering</td>
<td>Drug Identification and Testing</td>
</tr>
<tr>
<td>Synthetic Biology</td>
<td>Pre-Clinical Studies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CELLULAR AND MOLECULAR BIOLOGY (CELL)</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Physiology</td>
<td>Other</td>
</tr>
<tr>
<td>Cellular Immunology</td>
<td>Other</td>
</tr>
<tr>
<td>Genetics</td>
<td>Other</td>
</tr>
<tr>
<td>Molecular Biology</td>
<td>Other</td>
</tr>
<tr>
<td>Neurobiology</td>
<td>Other</td>
</tr>
</tbody>
</table>
Checklist for Adult Sponsor (1)
This completed form is required for ALL projects.

To be completed by the Adult Sponsor in collaboration with the student researcher(s):

Student's Name(s): __

Project Title: __

1. □ I have reviewed the Intel ISEF Rules and Guidelines.

2. □ I have reviewed the student’s completed Student Checklist (1A) and Research Plan/Project Summary.

3. □ I have worked with the student and we have discussed the possible risks involved in the project.

4. □ The project involves one or more of the following and requires prior approval by an SRC, IRB, IACUC or IBC:
 □ Humans □ Potentially Hazardous Biological Agents
 □ Vertebrate Animals □ Microorganisms □ rDNA □ Tissues

5. □ Items to be completed for ALL PROJECTS
 □ Adult Sponsor Checklist (1) □ Research Plan/Project Summary
 □ Student Checklist (1A) □ Approval Form (1B)
 □ Regulated Research Institutional/Industrial Setting Form (1C) (when applicable; after completed experiment)
 □ Continuation/Research Progression Form (7) (when applicable)

Additional forms required if the project includes the use of one or more of the following (check all that apply):

□ Humans, including student designed inventions/prototypes. (Requires prior approval by an Institutional Review Board (IRB); see full text of the rules.)
 □ Human Participants Form (4) or appropriate Institutional IRB documentation
 □ Sample of Informed Consent Form (when applicable and/or required by the IRB)
 □ Qualified Scientist Form (2) (when applicable and/or required by the IRB)

□ Vertebrate Animals (Requires prior approval, see full text of the rules.)
 □ Vertebrate Animal Form (5A) - for projects conducted in a school/home/field research site (SRC prior approval required.)
 □ Vertebrate Animal Form (5B) - for projects conducted at a Regulated Research Institution. (Institutional Animal Care and Use Committee (IACUC) approval required prior experimentation.)
 □ Qualified Scientist Form (2) (Required for all vertebrate animal projects at a regulated research site or when applicable)

□ Potentially Hazardous Biological Agents (Requires prior approval by SRC, IACUC or IBC, see full text of the rules.)
 □ Potentially Hazardous Biological Agents Risk Assessment Form (6A)
 □ Human and Vertebrate Animal Tissue Form (6B) - to be completed in addition to Form 6A when project involves the use of fresh or frozen tissue, primary cell cultures, blood, blood products and body fluids.
 □ Qualified Scientist Form (2) (when applicable)
 □ The following are exempt from prior review but require a Risk Assessment Form 3: projects involving protists, archae and similar microorganisms, for projects using manure for composting, fuel production or other non-culturing experiments, projects using color change coliform water test kits, microbial fuel cells, and projects involving decomposing vertebrate organisms.

□ Hazardous Chemicals, Activities and Devices (No SRC prior approval required, see full text of the rules.)
 □ Risk Assessment Form (3)
 □ Qualified Scientist Form (2) (required for projects involving DEA-controlled substances or when applicable)

__ □ ________________________________ □ ________________________________
Adult Sponsor's Printed Name □ Signature □ Date of Review (mm/dd/yy)

______ □ ________________________________ □ ________________________________
Phone □ Email

Student Checklist (1A)
This form is required for ALL projects.

1. a. Student/Team Leader: ___________________________ Grade: ___________________________
 Email: ___________________________ Phone: ___________________________
 b. Team Member: ___________________________ c. Team Member: ___________________________

2. Title of Project:
 __

3. School: ___________________________ School Phone: ___________________________
 School Address: ___
 __

4. Adult Sponsor: ___________________________ Phone/Email: ___________________________

5. Does this project need SRC/IRB/IACUC or other pre-approval? ☐ Yes ☐ No
 Tentative start date: ___________

6. Is this a continuation/progression from a previous year? ☐ Yes ☐ No
 If Yes:
 a. Attach the previous year’s ☐ Abstract and ☐ Research Plan/Project Summary
 b. Explain how this project is new and different from previous years on
 ☐ Continuation/Research Progression Form (7)

7. This year’s laboratory experiment/data collection:
 __
 Actual Start Date: (mm/dd/yy) End Date: (mm/dd/yy)

8. Where will you conduct your experimentation? (check all that apply)
 ☐ Research Institution ☐ School ☐ Field ☐ Home ☐ Other: ___________________________

9. List name and address of all non-home and non-school work site(s):
 Name: ___________________________ Address: ___________________________
 Phone/ email: ___________________________

10. Complete a Research Plan/Project Summary following the Research Plan/Project Summary instructions
 and attach to this form.

11. An abstract is required for all projects after experimentation.
Research Plan/Project Summary Instructions
A complete Research Plan/Project Summary is required for ALL projects and must accompany Student Checklist (1A).

1. All projects must have a Research Plan/Project Summary
 a. Written prior to experimentation following the instructions below to detail the rationale, research question(s), methodology, and risk assessment of the proposed research.
 b. If changes are made during the research, such changes can be added to the original research plan as an addendum, recognizing that some changes may require returning to the IRB or SRC for appropriate review and approvals. If no additional approvals are required, this addendum serves as a project summary to explain research that was conducted.
 c. If no changes are made from the original research plan, no project summary is required.

2. Some studies, such as an engineering design or mathematics projects, will be less detailed in the initial project plan and will change through the course of research. If such changes occur, a project summary that explains what was done is required and can be appended to the original research plan.

3. The Research Plan/Project Summary should include the following:
 a. **RATIONALE:** Include a brief synopsis of the background that supports your research problem and explain why this research is important and if applicable, explain any societal impact of your research.
 b. **RESEARCH QUESTION(S), HYPOTHESIS(ES), ENGINEERING GOAL(S), EXPECTED OUTCOMES:** How is this based on the rationale described above?
 c. Describe the following in detail:
 * **Procedures:** Detail all procedures and experimental design including methods for data collection. Describe only your project. Do not include work done by mentor or others.
 * **Risk and Safety:** Identify any potential risks and safety precautions needed.
 * **Data Analysis:** Describe the procedures you will use to analyze the data/results.
 d. **BIBLIOGRAPHY:** List major references (e.g. science journal articles, books, internet sites) from your literature review. If you plan to use vertebrate animals, one of these references must be an animal care reference.

Items 1–4 below are subject-specific guidelines for additional items to be included in your research plan/project summary as applicable.

1. **Human participants research:**
 a. **Participants:** Describe age range, gender, racial/ethnic composition of participants. Identify vulnerable populations (minors, pregnant women, prisoners, mentally disabled or economically disadvantaged).
 b. **Recruitment:** Where will you find your participants? How will they be invited to participate?
 c. **Methods:** What will participants be asked to do? Will you use any surveys, questionnaires or tests? If yes and not your own, how did you obtain? Did it require permissions? If so, explain. What is the frequency and length of time involved for each subject?
 d. **Risk Assessment:** What are the risks or potential discomforts (physical, psychological, time involved, social, legal, etc.) to participants? How will you minimize risks? List any benefits to society or participants.
 e. **Protection of Privacy:** Will identifiable information (e.g., names, telephone numbers, birth dates, email addresses) be collected? Will data be confidential/anonymous? If anonymous, describe how the data will be collected. If not anonymous, what procedures are in place for safeguarding confidentiality? Where will data be stored? Who will have access to the data? What will you do with the data after the study?
 f. **Informed Consent Process:** Describe how you will inform participants about the purpose of the study, what they will be asked to do, that their participation is voluntary and they have the right to stop at any time.

2. **Vertebrate animal research:**
 a. Discuss potential ALTERNATIVES to vertebrate animal use and present justification for use of vertebrates.
 b. Explain potential impact or contribution of this research.
 c. Detail all procedures to be used, including methods used to minimize potential discomfort, distress, pain and injury to the animals and detailed chemical concentrations and drug dosages.
 d. Detail animal numbers, species, strain, sex, age, source, etc., include justification of the numbers planned.
 e. Describe housing and oversight of daily care
 f. Discuss disposition of the animals at the termination of the study.

3. **Potentially hazardous biological agents research:**
 a. Give source of the organism and describe BSL assessment process and BSL determination.
 b. Detail safety precautions and discuss methods of disposal.

4. **Hazardous chemicals, activities & devices:**
 - Describe Risk Assessment process, supervision, safety precautions and methods of disposal.
 - Material Safety Data Sheets are not necessary to submit with paperwork.
Approval Form (1B)
A completed form is required for each student, including all team members.

1. To Be Completed by Student and Parent
 a. Student Acknowledgment:
 - I understand the risks and possible dangers to me of the proposed research plan.
 - I have read the Intel ISEF Rules and Guidelines and will adhere to all International Rules when conducting this research.
 - I have read and will abide by the following Ethics statement

Student researchers are expected to maintain the highest standards of honesty and integrity. Scientific fraud and misconduct are not condoned at any level of research or competition. Such practices include but are not limited to plagiarism, forgery, use or presentation of other researcher's work as one's own, and fabrication of data. Fraudulent projects will fail to qualify for competition in affiliated fairs and the Intel ISEF.

 b. Parent/Guardian Approval: I have read and understand the risks and possible dangers involved in the Research Plan/Project Summary. I consent to my child participating in this research.

 Student's Printed Name
 Signature
 Date Acknowledged (mm/dd/yy)
 (Must be prior to experimentation.)

 Parent/Guardian's Printed Name
 Signature
 Date Acknowledged (mm/dd/yy)
 (Must be prior to experimentation.)

2. To be completed by the local or affiliated Fair SRC
 (Required for projects requiring prior SRC/IRB APPROVAL. Sign 2a or 2b as appropriate.)

 a. Required for projects that need prior SRC/IRB approval
 BEFORE experimentation (humans, vertebrates or potentially hazardous biological agents).

 The SRC/IRB has carefully studied this project's Research Plan/Project Summary and all the required forms are included. My signature indicates approval of the Research Plan/Project Summary before the student begins experimentation.

 SRC/IRB Chair's Printed Name
 Signature
 Date of Approval (mm/dd/yy)
 (Must be prior to experimentation.)

 OR

 b. Required for research conducted at all Regulated Research Institutions with no prior fair SRC/IRB approval.

 This project was conducted at a regulated research institution (not home or high school, etc.), was reviewed and approved by the proper institutional board before experimentation and complies with the Intel ISEF Rules. Attach (1C) and any required institutional approvals (e.g. IACUC, IRB).

 SRC Chair's Printed Name
 Signature
 Date of Approval (mm/dd/yy)

3. Final Intel ISEF Affiliated Fair SRC Approval
 (Required for ALL Projects)

 SRC Approval After Experimentation and Before Competition at Regional/State/National Fair
 I certify that this project adheres to the approved Research Plan/Project Summary and complies with all Intel ISEF Rules.

 Regional SRC Chair's Printed Name
 Signature
 Date of Approval (mm/dd/yy)

 State/National SRC Chair's Printed Name (where applicable)
 Signature
 Date of Approval (mm/dd/yy)
Regulated Research Institutional/Industrial Setting Form (1C)
This form must be completed AFTER experimentation by the adult supervising the student research conducted in a regulated research institution, industrial setting or any work site other than home, school or field.

To be completed by the Supervising Adult in the Setting (NOT the Student(s)) after experimentation:
(Responses must be on the form as it is required to be displayed at student's project booth; please do not print double-sided.)

The student(s) conducted research at my work site:

1. Did you or your proxy (e.g. graduate student, postdoc, employee) mentor or provide substantial guidance to the student researcher? □ Yes □ No
 a. If no, describe your and/or your institution's role with the student researcher and his/her project (e.g. supervised use of equipment on site without ongoing mentorship and sign below.
 b. If yes, complete questions 2–5.

2. Is the student's research project a subset of your ongoing research or work? □ Yes □ No
 Use questions 3, 4 and 5 to detail how the student's project was similar and/or different from ongoing research or work at your site.

3. Describe the independence and creativity with which the student:
 a. developed the hypotheses or engineering goals for the research project
 b. designed the methodology for his/her research project
 c. analyzed and interpreted data

(Continued on next page)
Regulated Research Institutional/Industrial Setting Form (1C) Continued

Student’s Name(s) __

4. Detail the student’s role in conducting the research (e.g. data collection, specific procedures performed). Differentiate what the student observed and what the student actually did.

5. Did the student(s) work on the project as part of a group? □ Yes □ No
 If yes, how many individuals were in the group and who were they (e.g. high school students, graduate students, faculty, professional researchers)?

I attest that the student has conducted the work as indicated above and that any required review and approval by institutional regulatory board (IRB/IACUC/IBC) has been obtained. Copies are attached if applicable.
I further acknowledge that the student will be presenting this work publicly in competition and I have communicated with the student research regarding any requirements for my review and/or restrictions of what is publicized.

__
 Supervising Adult’s Printed Name

__
 Signature

__
 Title

__
 Institution

__
 Date Signed (must be after experimentation) (mm/dd/yy)

__
 Address

__
 Email/Phone
Qualified Scientist Form (2)

May be required for research involving human participants, vertebrate animals, potentially hazardous biological agents, and hazardous substances and devices. Must be completed and signed before the start of student experimentation.

Student's Name(s) __

Title of Project __

To be completed by the Qualified Scientist:

Scientist Name: ___

Educational Background: __________________________ Degree(s): ___________________

Experience/Training as relates to the student's area of research: ______________________

Position: __________________________ Institution: _______________________________

Address: __________________________ Email/Phone: _____________________________

1) Have you reviewed the Intel ISEF rules relevant to this project? □ Yes □ No

2. Will any of the following be used?
 a. Human participants □ Yes □ No
 b. Vertebrate animals □ Yes □ No
 c. Potentially hazardous biological agents (microorganisms, rDNA and tissues, including blood and blood products) □ Yes □ No
 d. Hazardous substances and devices □ Yes □ No

3. Will this study be a sub-set of a larger study? □ Yes □ No

4. Will you directly supervise the student?
 a. If no, who will directly supervise and serve as the Designated Supervisor? __________________________
 b. Experience/Training of the Designated Supervisor: __

To be completed by the Designated Supervisor when the Qualified Scientist cannot directly supervise.

I certify that I have reviewed the Research Plan/Project Summary and have been trained in the techniques to be used by this student, and I will provide direct supervision.

Designated Supervisor's Printed Name __________________________

Signature __________________________ Date of Approval (mm/dd/yy) __________________

Phone __________________________ Email __________________________

To be completed by the Qualified Scientist:

I certify that I have reviewed and approved the Research Plan/Project Summary prior to the start of the experiment. If the student or Designated Supervisor is not trained in the necessary procedures, I will ensure her/his training. I will provide advice and supervision during the research. I have a working knowledge of the techniques to be used by the student in the Research Plan/Project Summary. I understand that a Designated Supervisor is required when the student is not conducting experimentation under my direct supervision.

Qualified Scientist's Printed Name __________________________

Signature __________________________ Date of Approval (mm/dd/yy) __________________

Phone __________________________ Email __________________________
Risk Assessment Form (3)
Must be completed before experimentation.

Student's Name(s) __

Title of Project __

To be completed by the Student Researcher(s) in collaboration with Designated Supervisor/Qualified Scientist: (All questions must be answered; additional page(s) may be attached.)

1. List all hazardous chemicals, activities, or devices that will be used; identify microorganisms exempt from pre-approval (see Potentially Hazardous Biological Agent rules).

2. Identify and assess the risks involved in this project.

3. Describe the safety precautions and procedures that will be used to reduce the risks.

4. Describe the disposal procedures that will be used (when applicable).

5. List the source(s) of safety information.

To be completed and signed by the Designated Supervisor (or Qualified Scientist, when applicable):
I agree with the risk assessment and safety precautions and procedures described above. I certify that I have reviewed the Research Plan/Project Summary and will provide direct supervision.

Designated Supervisor's Printed Name ______________________________ Signature ______________________________ Date of Review (mm/dd/yy)

Position & Institution __ Phone or email contact information ______________________________

Experience/Training as relates to the student's area of research ______________________________
Human Participants Form (4)

Required for all research involving human participants not at a Regulated Research Institution. If at a Regulated Research Institution, use institutional approval forms for documentation of prior review and approval. (IRB approval required before recruitment or data collection.)

<table>
<thead>
<tr>
<th>Student's Name(s)</th>
<th>Title of Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adult Sponsor</th>
<th>Phone/Email</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Must be completed by Student Researcher(s) in collaboration with the Adult Sponsor/Designated Supervisor/Qualified Scientist:

1. □ I have submitted my Research Plan/Project Summary which addresses ALL areas indicated in the Human Participants Section of the Research Plan/Project Summary Instructions.
2. □ I have attached any surveys or questionnaires I will be using in my project or other documents provided to human participants.
 □ Any published instrument(s) used was /were legally obtained.
3. □ I have attached an informed consent that I would use if required by the IRB.
4. □ Yes □ No □ Are you working with a Qualified Scientist? If yes, attach the Qualified Scientist Form 2.

- Medical or Mental Health Professional (a psychologist, medical doctor, licensed social worker, licensed clinical professional counselor, physician's assistant, doctor of pharmacy, or registered nurse) with expertise related to this project.

BELOW – IRB USE ONLY

- Must be completed by Institutional Review Board (IRB) after review of the research plan. All questions must be answered for the approval to be valid. (If not approved, return paperwork to the student with instructions for modifications.)

- Approved with Full Committee Review (3 signatures required) and the following conditions: (All 6 must be answered)

1. Risk Level (check one):
 □ Minimal Risk □ More than Minimal Risk
2. Qualified Scientist (QS) Required (Form 2):
 □ Yes □ No
3. Designated Supervisor (DS) Required (Form 3):
 □ Yes □ No
4. Written Minor Assent required for minor participants:
 □ Yes □ No □ Not applicable (No minors in this study)
5. Written Parental Permission required for minor participants:
 □ Yes □ No □ Not applicable (No minors in this study)
6. Written Informed Consent required for participants 18 years or older:
 □ Yes □ No □ Not applicable (No participants 18 yrs or older in this study)

IRB SIGNATURES (All 3 signatures required) None of these individuals may be the adult sponsor, designated supervisor, qualified scientist or related to (e.g., mother, father of) the student (conflict of interest).

I attest that I have reviewed the student's project, that the checkboxes above have been completed to indicate the IRB determination and that I agree with the decisions above.

Educator

- Printed Name
- Degree
- Signature
- Date of Approval (Must be prior to experimentation.) (mm/dd/yy)

School Administrator

- Printed Name
- Degree/Professional License
- Signature
- Date of Approval (Must be prior to experimentation.) (mm/dd/yy)
Human Informed Consent Form

Instructions to the Student Researcher(s): An informed consent/assent/permission form should be developed in consultation with the Adult Sponsor, Designated Supervisor or Qualified Scientist. This form is used to provide information to the research participant (or parent/guardian) and to document written informed consent, minor assent, and/or parental permission.

- When written documentation is required, the researcher keeps the original, signed form.
- Students may use this sample form or may copy ALL elements of it into a new document.

If the form is serving to document parental permission, a copy of any survey or questionnaire must be attached.

Student Researcher(s):
Title of Project:

I am asking for your voluntary participation in my science fair project. Please read the following information about the project. If you would like to participate, please sign in the appropriate area below.

Purpose of the project:

If you participate, you will be asked to:

Time required for participation:

Potential Risks of Study:

Benefits:

How confidentiality will be maintained:

If you have any questions about this study, feel free to contact:

Adult Sponsor/QS/DS: ___________________________ Phone/email: ___________________________

Voluntary Participation:
Participation in this study is completely voluntary. If you decide not to participate there will not be negative consequences. Please be aware that if you decide to participate, you may stop participating at any time and you may decide not to answer any specific question.

By signing this form I am attesting that I have read and understand the information above and I freely give my consent/assent to participate or permission for my child to participate.

Adult Informed Consent or Minor Assent Date Reviewed & Signed: ___________________________ (mm/dd/yy)
Research Participant Printed Name: Signature:

Parental/Guardian Permission (if applicable) Date Reviewed & Signed: ___________________________ (mm/dd/yy)
Parent/Guardian Printed Name: Signature:
Vertebrate Animal Form (5A)
Required for all research involving vertebrate animals that is conducted in a school/home/field research site.
(SRC approval required before experimentation.)

Student's Name(s) __

Title of Project __

To be completed by Student Researcher:

1. Common name (or Genus, species) and number of animals used.

2. Describe completely the housing and husbandry to be provided. Include the cage/pen size, number of animals per cage, environment, bedding, type of food, frequency of food and water, how often animal is observed, etc. Add an additional page as necessary.

3. What will happen to the animals after experimentation?

4. Attach a copy of wildlife licenses or approval forms, as applicable

5. The Intel ISEF Vertebrate Animal Rules require that any death, illness or unexpected weight loss be investigated and documented by a letter from the qualified scientist, designated supervisor or a veterinarian. If applicable, attach this letter with this form when submitting your paperwork to the SRC prior to competition.

To be completed by Local or Affiliate Fair Scientific Review Committee (SRC) BEFORE experimentation.

Level of Supervision Required for agricultural, behavioral or nutritional studies:

☐ Designated Supervisor REQUIRED. Please have applicable person sign below.
☐ Veterinarian and Designated Supervisor REQUIRED. Please have applicable persons sign below.
☐ Veterinarian, Designated Supervisor and Qualified Scientist REQUIRED. Please have applicable persons sign below and have the Qualified Scientist complete Form (2).

The SRC has carefully reviewed this study and finds it is an appropriate study that may be conducted in a non-regulated research site.

Local or Affiliate Fair SRC Pre-Approval Signature:

__
SRC Chair Printed Name ___________________________ Signature ______________________ Date of Approval (mm/dd/yy)

To be completed by Veterinarian:

☐ I have reviewed this research and animal husbandry with the student before the start of experimentation.
☐ I have approved the use and dosages of prescription drugs and/or nutritional supplements.
☐ I will provide veterinary medical and nursing care in case of illness or emergency. (Fees may apply.)

Printed Name ___________________________ Email/Phone ___________________________
Signature ___________________________ Date of Approval (mm/dd/yy)

To be completed by Designated Supervisor or Qualified Scientist when applicable:

☐ I have reviewed this research and animal husbandry with the student before the start of experimentation and I accept primary responsibility for the care and handling of the animals in this project.
☐ I will directly supervise the experiment.

Printed Name ___________________________ Email/Phone ___________________________
Signature ___________________________ Date of Approval (mm/dd/yy)
Vertebrate Animal Form (5B)
Required for all research involving vertebrate animals that is conducted in a Regulated Research Institution. (IACUC approval required before experimentation. Form must be completed and signed after experimentation.)

Student’s Name(s) __

Title of Project __

Title and Protocol Number of IACUC Approved Project ____________________________

To be completed by Qualified Scientist or Principal Investigator:

1. Species of animals used: ___ Number of animals used: __________

2. Describe, in detail, the role of the student in this project: animal procedures and related equipment that were involved, oversight provided and safety precautions employed. (Attach extra pages if necessary.)

3. Was there any weight loss or death of any animal? If yes, attach a letter obtained from the qualified scientist, designated supervisor or a veterinarian documenting the situation and the results of the investigation.

4. Did the student’s project also involve the use of tissues?
 □ No
 □ Yes; complete Forms 6A and 6B

5. What laboratory training, including dates, was provided to the student?

6. Attach a copy of the Regulated Research Institution IACUC Approval. A letter from the Qualified Scientist or Principal Investigator is not sufficient.

Qualified Scientist/Principal Investigator

Printed Name

Signature ___________________________ Date (mm/dd/yy)

Student(s) Name(s) ________________________________

Title of Project ________________________________

To be completed by the QUALIFIED SCIENTIST/DESIGNATED SUPERVISOR in collaboration with the student researcher(s).
All questions are applicable and must be answered; additional page(s) may be attached.

SECTION 1: PROJECT ASSESSMENT

1. Identify potentially hazardous biological agents to be used in this experiment. Include the source, quantity and the biosafety level risk group of each microorganism.

2. Describe the site of experimentation including the level of biological containment.

3. Describe the procedures that will be used to minimize risk (personal protective equipment, hood type, etc.).

4. What final biosafety level do you recommend for this project given the risk assessment you conducted?

5. Describe the method of disposal of all cultured materials and other potentially hazardous biological agents.

SECTION 2: TRAINING

1. What training will the student receive for this project?

2. Experience/training of Designated Supervisor as it relates to the student’s area of research (if applicable).

SECTION 3: For ALL MICROORGANISMS, CELL LINES and TISSUES – To be completed by the QUALIFIED SCIENTIST or DESIGNATED SUPERVISOR - Check the appropriate box(es) below:

- [] Experimentation on the microorganisms/cell lines/tissues used in this study will NOT be conducted at a Regulated Research Institution, but will be conducted at a (check one) ___BSL-1 or ___BSL-2 laboratory. This study has been reviewed by the local SRC and the procedures have been approved prior to experimentation.

- [] Experimentation on the microorganisms/cell lines/tissues used in this study will be conducted at a Regulated Research Institution and was approved by the appropriate institutional board prior to experimentation; institutional approval forms are attached.

 Origin of cell lines:______________________________ Date of IACUC/IBC approval ___________________________

- [] Experimentation on the microorganisms/cell lines/tissues used in this study will be conducted at a Regulated Research Institution, which does not require pre-approval for this type of study. The SRC has reviewed that the student received appropriate training and the project complies with Intel ISEF rules.

CERTIFICATION – To be SIGNED by the QUALIFIED SCIENTIST or DESIGNATED SUPERVISOR

The QS/DS has seen this project's research plan and supporting documentation and acknowledges the accuracy of the information provided above. This study has been approved as a (check one) [] BSL-1/ [] BSL-2 study, and will be conducted in an appropriate laboratory.

QS/DS Printed Name ________________________________ Signature ________________________________

Date of review (mm/dd/yy) ________________________________

SECTION 4: CERTIFICATION – To be completed by the LOCAL or AFFILIATED FAIR SRC

The SRC has seen this project's research plan and supporting documentation and acknowledges the accuracy of the information provided above.

SRC Printed Name ________________________________ Signature ________________________________

Date of review (mm/dd/yy) ________________________________
Human and Vertebrate Animal Tissue Form (6B)

Required for research involving fresh/frozen tissue (including primary cell lines, human and other primate established cell lines and tissue cultures), blood, blood products and body fluids. If the research involves living organisms please ensure that the proper human or animal forms are completed. All projects using any tissue listed above must also complete Form 6A.

Student’s Name(s)

Title of Project

To be completed by Student Researcher(s):

1. What vertebrate animal tissue will be used in this study? Check all that apply.
 - Fresh or frozen tissue sample
 - Fresh organ or other body part
 - Blood
 - Body fluids
 - Primary cell/tissue cultures
 - Human or other primate established cell lines

2. Where will the above tissue(s) be obtained. If using an established cell line include source and catalog number.

3. If the tissue will be obtained from a vertebrate animal study conducted at a research institution attach a copy of the IACUC certification with the name of the research institution, the title of the study, the IACUC approval number and a copy of IACUC approval.

To be completed by the Qualified Scientist or Designated Supervisor:

☐ I verify that the student will work solely with organs, tissues, cultures or cells that will be supplied to him/her by myself or qualified personnel from the laboratory; and that if vertebrate animals were euthanized they were euthanized for a purpose other than the student’s research.

AND/OR

☐ I certify that the blood, blood products, tissues or body fluids in this project will be handled in accordance with the standards and guidance set forth in U.S. Occupational Safety and Health Act, 29CFR, Subpart Z, 1910.1030 - Blood Borne Pathogens.

Printed Name

Signature

Date of Approval (mm/dd/yy)
(Must be prior to experimentation.)

Title

Phone/Email

Institution
To be completed by Student Researcher: List all components of the current project that make it new and different from previous research. The information must be on the form; use an additional form for 2016–2017 and earlier projects.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Title</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Change in goal/purpose/objective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Changes in methodology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Variable studied</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Additional changes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attached are:

☐ 2017–2018 Abstract and Research Plan/Project Summary

I hereby certify that the above information is correct and that the current year Abstract & Certification and project display board properly reflect work done only in the current year.

Student’s Printed Name(s) Signature Date of Signature (mm/dd/yy)
The Intel International Science and Engineering Fair encourages students to tackle challenging scientific questions and develop the skills needed to solve the problems of tomorrow.

Society for Science & the Public
The Society for Science & the Public is a champion for science, dedicated to expanding scientific literacy, effective STEM education and scientific research. Founded in 1921, we are a nonprofit 501(c)(3) membership organization focused on promoting the understanding and appreciation of science and the vital role it plays in human advancement. Through its acclaimed education competitions, including the Regeneron Science Talent Search, the Intel International Science and Engineering Fair and the Broadcom MASTERS, and the Science News Media Group, including the award-winning *Science News* and *Science News for Students*, the Society is committed to inform, educate and inspire. societyforscience.org

To learn more about the Intel International Science and Engineering Fair, visit: student.societyforscience.org/intel-isef

Intel Corporation
The foundation of tomorrow's innovation is education. That's why making quality education available to more students around the world - with the help of technology - has inspired Intel's commitment to education for 40 years. We do more than make contributions. Intel gets directly involved in developing and helping to change policy, training teachers, offering free curricula, providing kids with a place to explore technology, and encouraging young innovators. Intel believes that students at all levels everywhere deserve to have the skills they need to become part of the next generation of innovators.

In the last decade, Intel has invested more than $1 billion, and Intel employees have donated more than four million hours, toward improving education in more than 80 countries, regions, and territories. We are actively involved in education programs, advocacy, and technology access to help tomorrow's innovators. intel.com/education